版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
直線的方向向量與平面的法向量齊河一中數(shù)學(xué)組YXZABCDEF練習(xí):在正方體ABCD—A1B1C1D1中E、F分別是BB1、CD的中點(diǎn),求證:D1F平面ADE為了用向量來研究空間的線面位置關(guān)系,首先我們要用向量來表示直線和平面的“方向”。那么如何用向量來刻畫直線和平面的“方向”呢?一、直線的方向向量AB直線l上的向量以及與共線的向量叫做直線l的方向向量。由于垂直于同一平面的直線是互相平行的,所以,可以用垂直于平面的直線的方向向量來刻畫平面的“方向”。二、平面的法向量平面的法向量:如果表示向量
的有向線段所在直線垂直于平面
,則稱這個(gè)向量垂直于平面,記作
⊥,如果
⊥,那么向量
叫做平面的法向量.Al
給定一點(diǎn)A和一個(gè)向量,那么過點(diǎn)A,以向量為法向量的平面是完全確定的.幾點(diǎn)注意:1.法向量一定是非零向量;2.一個(gè)平面的所有法向量都互相平行;3.向量是平面的法向量,向量是與平面平行或在平面內(nèi),則有由兩個(gè)三元一次方程組成的方程組的解是不惟一的,為方便起見,取z=1較合理。其實(shí)平面的法向量不是惟一的。平面的法向量不惟一,合理取值即可。
因?yàn)榉较蛳蛄颗c法向量可以確定直線和平面的位置,所以我們應(yīng)該可以利用直線的方向向量與平面的法向量表示空間直線、平面間的平行、垂直、夾角等位置關(guān)系.那么如何用直線的方向向量表示空間兩直線平行、垂直的位置關(guān)系以及它們之間的夾角呢?如何用平面的法向量表示空間兩平面平行、垂直的位置關(guān)系以及它們二面角的大小呢?l1l2l1三、平行關(guān)系:例4如圖,已知矩形和矩形所在平面互相垂直,點(diǎn)分別在對(duì)角線上,且求證:ABCDEFxyzMN簡證:因?yàn)榫匦蜛BCD和矩形ADEF所在平面互相垂直,所以AB,AD,AF互相垂直。以為正交基底,建立如圖所示空間坐標(biāo)系,設(shè)AB,AD,AF長分別為3a,3b,3c,則可得各點(diǎn)坐標(biāo),從而有又平面CDE的一個(gè)法向量是因?yàn)镸N不在平面CDE內(nèi)所以MN//平面CDEl1l2l四、垂直關(guān)系:A1xD1B1ADBCC1yzEFCD中點(diǎn),求證:D1F例5.在正方體中,E、F分別是BB1,,平面ADE
證明:設(shè)正方體棱長為1,為單位正交基底,建立如圖所示坐標(biāo)系D-xyz,則可得:所以1.如圖,正方體中,
E為的中點(diǎn),證明://平面AEC練習(xí):用空間向量來解決下列題目2、在正方體AC中,E、F、G、P、
Q、R分別是所在棱AB、BC、BB
AD
、DC
、DD的中點(diǎn),求證:⑴平面PQR∥平面EFG。
⑵BD⊥平面EFGABCDABCDFQEGRP1、設(shè)平面的法向量為(1,2,-2),平面的法向量為(-2,-4,k),若,則k=
;若則k=
。2、已知,且的方向向量為(2,m,1),平面的法向量為(1,1/2,2),則m=
.3、若的方向向量為(2,1,m),平面的法向量為(1,1/2,2),且,則m=
.鞏固性訓(xùn)練3
由線線垂直可以得到線面垂直,再由線面垂直又可以得到線線垂直。平面的斜線、斜線在平面內(nèi)的射影 PAB圖1α圖2如圖2,PA∩α=A,PA不垂直α,思考:平面的斜線在平面內(nèi)的射影是什么圖形?答案:仍是一條直線BA直線PA--------叫做平面α的斜線;點(diǎn)A叫做斜足.線段PA叫做斜線段.三垂線定理PmBAα證明:PA平面PAB∪m⊥PAPB⊥αmα∪PB⊥mBA⊥mm⊥平面PAB性質(zhì)定理判定定理性質(zhì)定理線面垂直①線線垂直②線面垂直③線線垂直三垂線定理:在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直一面——平面α(基礎(chǔ)平面);四線——PB(α的垂線),PA(斜線),BA(射影),m(α內(nèi)的直線))三垂直——PB⊥
m,,BA⊥m,PA⊥m故稱“三垂線定理”一面四線三垂直三垂線定理中的元素(1)PmBAα直線a一定要在平面內(nèi),如果a不在平面內(nèi),定理就不一定成立。PAOaα例如:當(dāng)b⊥α?xí)r,則b⊥OA注意:定理中“在平面內(nèi)”的條件不能去掉。b但
b不垂直于OP三垂線定理三垂線定理中的元素(2)線射垂直線斜垂直αPAOaPAOaα平面內(nèi)的一條直線和平面的一條斜線在平面內(nèi)的射影垂直平面內(nèi)的一條直線和平面的一條斜線垂直三垂線定理的逆命題?三垂線定理思考題:想一想?如圖,PA
垂直于以AB為直徑的圓O平面,C為圓O上任一點(diǎn)(異于A,B),試判斷圖中共有幾個(gè)直角三角形,并說明理由。三垂線定理1、已知點(diǎn)O是△ABC的BC邊的高上的任意一點(diǎn),且OP⊥平面ABC,求證PA⊥BC.2、如圖,PD⊥平面ABC,AC=BC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標(biāo)準(zhǔn)個(gè)人財(cái)產(chǎn)抵押借款協(xié)議范本版B版
- 2024年版餐飲業(yè)租賃協(xié)議標(biāo)準(zhǔn)模板版B版
- 2024年度物流配送與新能源充電服務(wù)承包合同3篇
- 2025關(guān)于揚(yáng)州市的勞動(dòng)合同范本
- 2025短期借款合同2
- 2024年木工職業(yè)培訓(xùn)與就業(yè)服務(wù)合同范本3篇
- 2024年標(biāo)準(zhǔn)型塑料產(chǎn)品購銷協(xié)議樣本版B版
- 2024年度智能停車場(chǎng)租賃及管理服務(wù)合同模板3篇
- 2024年開業(yè)慶典禮儀模特服務(wù)合同
- 2024全新彩鋼板房構(gòu)件生產(chǎn)與運(yùn)輸服務(wù)合同3篇
- 如何提高中小學(xué)生的閱讀能力
- 中國風(fēng)古詩詞詩歌朗讀比賽大會(huì)唐詩宋詞含內(nèi)容課件兩篇
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)基礎(chǔ)(第6版)全套教學(xué)課件
- 計(jì)量經(jīng)濟(jì)學(xué)與Stata應(yīng)用
- 12、口腔科診療指南及技術(shù)操作規(guī)范
- 湖南省岳陽市2023年八年級(jí)上學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試題附答案
- 食用菌技術(shù)員聘用合同范本
- 第三單元-設(shè)計(jì)制作-主題活動(dòng)三《創(chuàng)意木書夾》-課件
- 電梯維保服務(wù)投標(biāo)方案
- 幼兒園名師優(yōu)質(zhì)公開課:大班社會(huì)《獨(dú)一無二的我》課件
- 建筑節(jié)能課件
評(píng)論
0/150
提交評(píng)論