2023年湖北中醫(yī)藥高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年湖北中醫(yī)藥高等專科學校高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年湖北中醫(yī)藥高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年湖北中醫(yī)藥高等??茖W校高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年湖北中醫(yī)藥高等專科學校高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年湖北中醫(yī)藥高等??茖W校高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:22.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π53.有以下命題:①如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關系是不共線;②O,A,B,C為空間四點,且向量不構(gòu)成空間的一個基底,那么點O,A,B,C一定共面;③已知向量是空間的一個基底,則向量,也是空間的一個基底.其中正確的命題是[

]A.①②

B.①③

C.②③

D.①②③答案:C4.某校在檢查學生作業(yè)時,抽出每班學號尾數(shù)為4的學生作業(yè)進行檢查,這里主要運用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機抽樣

D.系統(tǒng)抽樣答案:D5.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當n=2時,左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設n=k(k≥2)時不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當n=k+1時,不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數(shù)成立.6.在平面直角坐標系中,橫坐標、縱坐標均為有理數(shù)的點稱為有理點.試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點M(2,1),則此直線不能經(jīng)過兩個有理點.答案:證明:假設此直線上有兩個有理點A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個有理點.7.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.8.若關于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.9.設F為拋物線y2=ax(a>0)的焦點,點P在拋物線上,且其到y(tǒng)軸的距離與到點F的距離之比為1:2,則|PF|等于()

A.

B.a(chǎn)

C.

D.答案:D10.甲,乙兩個工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結(jié)論:()

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些

B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些

C.兩人的產(chǎn)品質(zhì)量一樣好

D.無法判斷誰的質(zhì)量好一些答案:B11.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()

A.至少有1個白球;都是白球

B.至少有1個白球;至少有1個紅球

C.恰有1個白球;恰有2個白球

D.至少有一個白球;都是紅球答案:C12.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.13.已知空間四邊形OABC,M,N分別是OA,BC的中點,且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.14.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進行排列,有A22種排法,再把A、B看成一個元素,和E進行排列,有A22種排法,最后再把C、D插入進去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2415.對于5年可成材的樹木,從栽種到5年成材的木材年生長率為18%,以后木材的年生長率為10%.樹木成材后,既可以出售樹木,重栽新樹苗;也可以讓其繼續(xù)生長.問:哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數(shù)據(jù):lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結(jié)果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.16.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C17.

在△ABC中,點D在線段BC的延長線上,且BC=3CD,點O在線段CD上(與點C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D18.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點共面;

(2)試判斷平面EFGH與平面ABCD的位置關系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.19.設x1、x2、y1、y2是實數(shù),且滿足x12+x22≤1,

證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當x12+x22=1時,原不等式成立.……………3分(2)當x12+x22<1時,聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分20.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D21.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為

______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2222.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于

______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.23.△ABC內(nèi)接于以O為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.24.六個不同大小的數(shù)按如圖形式隨機排列,設第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設這六個數(shù)分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.25.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B26.已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標方程是ρ=4cosθ化為直角坐標方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.27.如圖表示空間直角坐標系的直觀圖中,正確的個數(shù)為()

A.1個

B.2個

C.3個

D.4個答案:C28.在復平面內(nèi),復數(shù)z=sin2+icos2對應的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應的點在第四象限,故選D.29.設a,b是非負實數(shù),求證:a3+b3≥ab(a2+b2).答案:證明:由a,b是非負實數(shù),作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].當a≥b時,a≥b,從而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;當a<b時,a<b,從而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).30.雙曲線的實軸長和焦距分別為()

A.

B.

C.

D.答案:C31.用A、B、C三類不同的元件連接成兩個系統(tǒng)N1、N2當元件A、B、C都正常工作時,系統(tǒng)N1正常工作,當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.

答案:0.792解析:解:分別記三個元件A、B、C能正常工作為事件A、B、C,由題意,這三個事件相互獨立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。32.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.33.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°34.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.35.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗,甲勝乙的概率為23.

(1)求比賽三局甲獲勝的概率;

(2)求甲獲勝的概率;

(3)設甲比賽的次數(shù)為X,求X的數(shù)學期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3

(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.36.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學歸納法證明:①當n=1時,f1(x)=x1+x22,已知,顯然成立②假設當n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.37.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send38.給出下列結(jié)論:

(1)兩個變量之間的關系一定是確定的關系;

(2)相關關系就是函數(shù)關系;

(3)回歸分析是對具有函數(shù)關系的兩個變量進行統(tǒng)計分析的一種常用方法;

(4)回歸分析是對具有相關關系的兩個變量進行統(tǒng)計分析的一種常用方法.

以上結(jié)論中,正確的有幾個?()

A.1

B.2

C.3

D.4答案:A39.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()

A.2

B.4

C.8

D.4答案:C40.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B41.下列命題錯誤的是(

)A.命題“若,則中至少有一個為零”的否定是:“若,則都不為零”。B.對于命題,使得;則是,均有。C.命題“若,則方程有實根”的逆否命題為:“若方程無實根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.42.點(2,0,3)在空間直角坐標系中的位置是在()

A.y軸上

B.xOy平面上

C.xOz平面上

D.第一卦限內(nèi)答案:C43.我市某機構(gòu)為調(diào)查2009年下半年落實中學生“陽光體育”活動的情況,設平均每人每天參加體育鍛煉時間為X(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,右圖是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運動時間超過20分鐘的學生人數(shù),由于統(tǒng)計總?cè)藬?shù)是10000,又輸出的S=6200,故運動時間不超過20分鐘的學生人數(shù)是3800事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的”頻率是380010000=0.38故選B44.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D45.若集合S={a,b,c}(a、b、c∈R)中三個元素為邊可構(gòu)成一個三角形,那么該三角形一定不可能是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D46.方程組的解集為()

A.{2,1}

B.{1,2}

C.{(2,1)}

D.(2,1)答案:C47.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關,u與v正相關

B.變量x與y正相關,u與v負相關

C.變量x與y負相關,u與v正相關

D.變量x與y負相關,u與v負相關答案:C48.附加題(必做題)

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.

(1)設AD=λAB,異面直線AC1與CD所成角的余弦值為925,求λ的值;

(2)若點D是AB的中點,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分別為x,y,z軸建立如圖所示空間直角坐標,因為AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因為AD=λAB,所以點D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因為異面直線AC1與CD所成角的余弦值為925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因為

D是AB的中點,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量

n1=(1,0,0),設平面DB1C的一個法向量n2=(x0,y0,z0),則n1,n2的夾角(或其補角)的大小就是二面角D-CB1-B的大小,由n2?CD=0n2?CB

1=0得32x0+2y0=04y0+4z0=0令x0=4,則y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1?n2|n1|?|n2|=434=23417.所以二面角D-B1C-B的余弦值為23417.

…(10分)49.半徑為R的球內(nèi)接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個正方體,設正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;50.一個公司共有240名員工,下設一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個個體被抽到的概率是

20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.第2卷一.綜合題(共50題)1.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C2.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故選D3.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B4.某程序圖如圖所示,該程序運行后輸出的結(jié)果是______.答案:由圖知運算規(guī)則是對S=2S,故第一次進入循環(huán)體后S=21,第二次進入循環(huán)體后S=22=4,第三次進入循環(huán)體后S=24=16,第四次進入循環(huán)體后S=216>2012,退出循環(huán).故該程序運行后輸出的結(jié)果是:k=4+1=5.故為:55.命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”過程應用了()

A.分析發(fā)

B.綜合法

C.綜合法、分析法結(jié)合使用

D.間接證法答案:B6.為了調(diào)查高中生的性別與是否喜歡足球之間有無關系,一般需要收集以下數(shù)據(jù)______.答案:為了調(diào)查高中生的性別與是否喜歡足球之間有無關系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機變量的觀測值公式,得出結(jié)果.故為:男女生中喜歡或不喜歡足球的人數(shù).7.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實根個數(shù)是()

A.1

B.2

C.3

D.2006答案:B8.若角α和β的兩邊分別對應平行且方向相反,則當α=45°時,β=______.答案:由題意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故為45°.9.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.10.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略11.某公司招聘員工,經(jīng)過筆試確定面試對象人數(shù),面試對象人數(shù)按擬錄用人數(shù)分段計算,計算公式為:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表擬錄用人數(shù),y代表面試對象人數(shù).若應聘的面試對象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴當1≤x≤10時,由4x=60得x=15?[1,10],不滿足題意;當10<x≤100時,由2x+10=60得x=25∈(10,100],滿足題意;當x>100時,由1.5x=60得x=40?(100,+∞),不滿足題意.∴該公司擬錄用人數(shù)為25.故選D.12.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設,x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)13.已知x∈{1,2,x2},則實數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時集合為{1,2,1}不合題意②x=2此時集合為{1,2,4}合題意③x=x2解得x=0或x=1當x=0時集合為{1,2,0}合題意故為0或2.14.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C15.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A16.在甲、乙兩個盒子里分別裝有標號為1、2、3、4的四個小球,現(xiàn)從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.

(1)求取出的兩個小球上標號為相鄰整數(shù)的概率;

(2)求取出的兩個小球上標號之和能被3整除的概率;

(3)求取出的兩個小球上標號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個小球上標號為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標號為相鄰整數(shù)的概率P=38;(2)其中取出的兩個小球上標號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標號之和能被3整除的概率為516;(3)其中取出的兩個小球上標號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標號之和大于5的概率P=3817.過A(-2,3),B(2,1)兩點的直線的斜率是()

A.

B.

C.-2

D.2答案:B18.設x1、x2、y1、y2是實數(shù),且滿足x12+x22≤1,

證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當x12+x22=1時,原不等式成立.……………3分(2)當x12+x22<1時,聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分19.在同一個坐標系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D20.若f(x)=x2,則對任意實數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A21.設0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D22.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:1618或138223.點P(2,5)關于直線x+y=1的對稱點的坐標是(

)。答案:(-4,-1)24.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線25.如圖所示,已知點P在正方體ABCD—A′B′C′D′的對角線

BD′上,∠PDA=60°.

(1)求DP與CC′所成角的大小;

(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點,DA為單位長度建立空間直角坐標系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因為cos〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個法向量是=(0,1,0).因為cos〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.26.方程ax2+2x+1=0至少有一個負的實根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C27.設四邊形ABCD中,有且,則這個四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C28.在平面直角坐標系xOy中,已知拋物線關于x軸對稱,頂點在原點O,且過點P(2,4),則該拋物線的方程是______.答案:設所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x29.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.30.為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00-10:00間各自的點擊量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:

(1)甲、乙兩個網(wǎng)站點擊量的極差,中位數(shù)分別是多少?

(2)甲網(wǎng)站點擊量在[10,40]間的頻率是多少?(結(jié)果用分數(shù)表示)

(3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點擊量集中在莖葉圖的下方,而乙網(wǎng)站的點擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,甲網(wǎng)站更受歡迎。31.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C32.在空間坐標中,點B是A(1,2,3)在yOz坐標平面內(nèi)的射影,O為坐標原點,則|OB|等于()

A.

B.

C.2

D.答案:B33.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π534.已知△ABC和點M滿足.若存在實數(shù)使得成立,則m=()

A.2

B.3

C.4

D.5答案:B35.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).

(I)求橢圓C的離心率:

(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且2|AQ|2=1|AM|2+1|AN|2,求點Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設點Q的坐標為(x,y)(1)當直線l與x軸垂直時,直線l與橢圓C交于(0,1)、(0,-1)兩點,此時點Q的坐標為(0,2-355)(2)當直線l與x軸不垂直時,可設其方程為y=kx+2,因為M,N在直線l上,可設點M,N的坐標分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1

2,|AN|2=(1+k2)x2

2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1

2+1(1+k2)x2

2,即2x2=1x1

2+1x2

2=(x1+x2)2-2x1x2x1

2x2

2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡得x2=1810k2-3…③因為點Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分36.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.37.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當n=1,2,3時,2n=n2-n+2,∴an=n2+1.當n≥4時,猜想2n>n2-n+2,證明如下:當n=4時,顯然2k>k2-4+2假設當n=k≥4時,猜想成立,即2k>k2-k+2,則當n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當n≥4時,猜想2n>n2-n+2成立,∴當n≥4時,an>n2+1.38.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:39.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()

A.

B.

C.

D.答案:D40.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點的向量

B.等長的向量

C.共面向量

D.不共面向量答案:C41.盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個.若從中隨機取出2個球,則所取出的2個球顏色不同的概率等于______.答案:從中隨機取出2個球,每個球被取到的可能性相同,是古典概型從中隨機取出2個球,所有的取法共有C52=10所取出的2個球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為3542.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),則k的取值范圍是

______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1243.若p、q是兩個簡單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D44.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關于點A的對稱點,則有,,代入曲線C的方程,得關于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關于點A的對稱點在曲線C上,因此,曲線C與C1關于點A對稱.45.設D為△ABC的邊AB上一點,P為△ABC內(nèi)一點,且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.46.(本題滿分12分)

已知:

求證:答案:.證明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案47.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.48.若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k2=4.013,那么有()把握認為兩個變量有關系.

A.95%

B.97.5%

C.99%

D.99.9%答案:A49.圓x2+y2-4x=0,在點P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D50.OA、OB(O為原點)是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點,且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:1第3卷一.綜合題(共50題)1.設a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點共線,則m的值為()

A.1

B.2

C.-2

D.-1答案:D2.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D3.在△ABC中,AB=2,AC=1,D為BC的中點,則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.4.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關,u與v正相關

B.變量x與y正相關,u與v負相關

C.變量x與y負相關,u與v正相關

D.變量x與y負相關,u與v負相關答案:C5.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點F(12,0),準線x=-12,延長PM交準線于H點.則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設直線FA與拋物線交于P0點,可計算得P0(3,94),另一交點(-13,118)舍去.當P重合于P0時,|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.6.若矩陣M=1111,則直線x+y+2=0在M對應的變換作用下所得到的直線方程為______.答案:設直線x+y+2=0上任意一點(x0,y0),(x',y')是所得的直線上一點,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.7.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當滿足條件是x是奇數(shù),不滿足條件時x為偶數(shù)故(1)中應填寫r=1故為:r=18.已知:關于x的方程2x2+kx-1=0

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.9.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D10.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因為k=5,結(jié)束循環(huán),輸出結(jié)果S=2+4+6+8=20.故為:20.11.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.12.直線(t為參數(shù))被圓x2+y2=9截得的弦長為()

A.

B.

C.

D.答案:B13.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個能被3整除”時,假設應為()

A.b都能被3整除

B.b都不能被3整除

C.b不都能被3整除

D.a(chǎn)不能被3整除答案:B14.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x15.在極坐標中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()

A.

B.

C.

D.答案:A16.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C17.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.18.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又

f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)

≤f(2aba+b)即A≤B≤C故為:A≤B≤C.19.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實數(shù)a,b,m,n的大小關系可能是()

A.m<a<b<n

B.a(chǎn)<m<n<b

C.a(chǎn)<m<b<n

D.m<a<n<b答案:A20.已知圓的極坐標方程ρ=2cosθ,直線的極坐標方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.21.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設該池塘中有x條魚,由題設條件建立方程:30x=250,解得x=750.故為:750.22.曲線(θ為參數(shù))上的點到原點的最大距離為()

A.1

B.

C.2

D.答案:C23.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:624.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C25.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C26.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當b=a=0時,b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當a,b,c成等比數(shù)列且a<0,b<0,c<0時,得不到b=ac故不必要.故選:D27.在平面直角坐標系xOy中,設P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B28.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.29.將包含甲、乙兩人的4位同學平均分成2個小組參加某項公益活動,則甲、乙兩名同學分在同一小組的概率為()

A.

B.

C.

D.答案:C30.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.31.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.32.某超市推出如下優(yōu)惠方案:

(1)一次性購物不超過100元不享受優(yōu)惠;

(2)一次性購物超過100元但不超過300元的一律九折;

(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.

如果他一次性購買與上兩次相同的商品,則應付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應付款316元或288元.故為316元或288元.33.在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()

A.24種

B.48種

C.96種

D.144種答案:C34.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE可表示為(用a,b、c表示).

()A.12a+14b+14cB.12a+13

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論