2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年河南測(cè)繪職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:22.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個(gè)二個(gè)試點(diǎn)為好點(diǎn),則第三個(gè)試點(diǎn)應(yīng)選在(

)。答案:12363.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A4.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為1245.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時(shí),y=2x+10∈(30,210],又因?yàn)?0∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.6.直線(3+4)x+(4-6)y-14-2=0(∈R)恒過定點(diǎn)A,則點(diǎn)A的坐標(biāo)為(

)。答案:(2,-1)7.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()

A.(2,)

B.(2,)

C.(1,)

D.(1,)答案:A8.

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B9.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點(diǎn)______.答案:回歸直線方程一定過樣本的中心點(diǎn)(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,

.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點(diǎn)是(1.1675,2.3925),故為(1.1675,2.3925).10.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗(yàn)田上對(duì)某棉花新品種進(jìn)行施化肥量x對(duì)產(chǎn)量y影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).

施化肥量x15202530354045棉花產(chǎn)量y330345365405445450455(1)畫出散點(diǎn)圖;

(2)判斷是否具有相關(guān)關(guān)系.答案:(1)根據(jù)已知表格中的數(shù)據(jù)可得施化肥量x和產(chǎn)量y的散點(diǎn)圖如下所示:(2)根據(jù)(1)中散點(diǎn)圖可知,各組數(shù)據(jù)對(duì)應(yīng)點(diǎn)大致分布在一個(gè)條形區(qū)域內(nèi)(一條直線附近)故施化肥量x和產(chǎn)量y具有線性相關(guān)關(guān)系.11.若動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對(duì)值為定值a(0≤a≤2),試求動(dòng)點(diǎn)P的軌跡.答案:①當(dāng)a=0時(shí),||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點(diǎn)P的軌跡為直線:線段F1F2的垂直平分線.②當(dāng)a=2時(shí),||PF1|-|PF2||=2=|F1F2|,所以點(diǎn)P的軌跡為兩條射線.③當(dāng)0<a<2時(shí),||PF1|-|PF2||=a<|F1F2|,所以點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線.12.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()

A.

B.

C.

D.

答案:C13.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B14.探測(cè)某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長(zhǎng)率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達(dá)到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為1915.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)16.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).17.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D18.在復(fù)平面上,設(shè)點(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別為i,1,4+2i,過A、B、C作平行四邊形ABCD,則平行四邊形對(duì)角線BD的長(zhǎng)為______.答案:∵點(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設(shè)D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對(duì)角線BD的長(zhǎng)度是4+9=13故為:1319.在120個(gè)零件中,一級(jí)品24個(gè),二級(jí)品36個(gè),三級(jí)品60個(gè).用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個(gè)個(gè)體被抽取到的概率是()

A.

B.

C.

D.答案:D20.甲、乙兩人對(duì)一批圓形零件毛坯進(jìn)行成品加工.根據(jù)需求,成品的直徑標(biāo)準(zhǔn)為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機(jī)抽取5件,測(cè)得直徑(單位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計(jì)誰(shuí)加工的零件較好?

(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計(jì)乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時(shí)間A有7種.故P(A)=710.21.下列對(duì)一組數(shù)據(jù)的分析,不正確的說法是()

A.?dāng)?shù)據(jù)極差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

B.?dāng)?shù)據(jù)平均數(shù)越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

C.?dāng)?shù)據(jù)標(biāo)準(zhǔn)差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

D.?dāng)?shù)據(jù)方差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定答案:B22.若2x1+3y1=4,2x2+3y2=4,則過點(diǎn)A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因?yàn)檫^兩點(diǎn)確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=423.設(shè)=(3,4),=(sinα,cosα),且⊥,則tanα的值為()

A.

B.-

C.

D.-答案:D24.若向量,則這兩個(gè)向量的位置關(guān)系是___________。答案:垂直25.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個(gè)矩陣只有當(dāng)前一個(gè)矩陣的列數(shù)與后一個(gè)矩陣的行數(shù)相等時(shí),才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④26.小王通過英語(yǔ)聽力測(cè)試的概率是,他連續(xù)測(cè)試3次,那么其中恰有1次獲得通過的概率是()

A.

B.

C.

D.答案:A27.下列點(diǎn)在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C28.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.29.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.30.在空間直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C31.如圖,在長(zhǎng)方體OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,點(diǎn)P在棱AA1上,且AP=2PA1,點(diǎn)S在棱BB1上,且SB1=2BS,點(diǎn)Q、R分別是O1B1、AE的中點(diǎn),求證:PQ∥RS.答案:證明:如圖,建立空間直角坐標(biāo)系,則A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R?PQ,∴PQ∥RS32.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點(diǎn)的向量中:

(1)與a相等的向量有

______;

(2)與b相等的向量有

______;

(3)與c相等的向量有

______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點(diǎn)的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,F(xiàn)A;(3)與c相等的向量有FO,OC,ED.故三個(gè)空依次應(yīng)填EF,DO,CB;DC,EO,F(xiàn)A;FO,OC,ED.33.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B34.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1

200人,女學(xué)生1

000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19235.由1、2、3可以組成______個(gè)沒有重復(fù)數(shù)字的兩位數(shù).答案:沒有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個(gè)故為:636.一個(gè)單位有職工800人,其中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級(jí)職稱的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C37.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.38.如圖所示的方格紙中有定點(diǎn)O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C39.已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點(diǎn)M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.40.已知平面向量=(3,1),=(x,3),且⊥,則實(shí)數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C41.籃球運(yùn)動(dòng)員在比賽中每次罰球命中得1分,罰不中得0分.已知某運(yùn)動(dòng)員罰球命中的概率為0.7,求

(1)他罰球1次的得分X的數(shù)學(xué)期望;

(2)他罰球2次的得分Y的數(shù)學(xué)期望;

(3)他罰球3次的得分η的數(shù)學(xué)期望.答案:(1)X的取值為1,2,則因?yàn)镻(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.42.如圖:已知圓上的弧

AC=

BD,過C點(diǎn)的圓的切線與BA的延長(zhǎng)線交于E點(diǎn),證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)43.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么

這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.44.若向量?jī)蓛伤傻慕窍嗟龋?,則等于()

A.2

B.5

C.2或5

D.或答案:C45.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)46.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C47.已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知?jiǎng)狱c(diǎn)P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動(dòng)點(diǎn)P在以F(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.48.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A49.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時(shí),方程對(duì)應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時(shí)函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>150.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.第2卷一.綜合題(共50題)1.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B2.已知直線l過點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D3.正十邊形的一個(gè)內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個(gè)內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時(shí).得到一個(gè)內(nèi)角為180°(10-2)10=144°4.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.5.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C6.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()

A.

B.

C.

D.

答案:C7.若函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),畫出一個(gè)滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.8.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有40名,高二年級(jí)有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了8名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級(jí)有40名學(xué)生,在高一年級(jí)的學(xué)生中抽取了8名,∴每個(gè)個(gè)體被抽到的概率是

840=15∵高二年級(jí)有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.9.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C10.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:11.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x512.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域?yàn)椋?,+∞).故為(0,+∞).13.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,則x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a?b=x+2+0=0,x=-2.故為:-2.14.已知△A′B′C′是水平放置的邊長(zhǎng)為a的正三角形△ABC的斜二測(cè)平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長(zhǎng)為a,故面積為34a2,而原圖和直觀圖面積之間的關(guān)系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.15.已知矩陣A=12-14,向量a=74.

(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;

(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)16.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C17.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C18.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為719.設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).

(1)設(shè)復(fù)數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

,

3)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于233,求實(shí)數(shù)x0的取值范圍.答案:(1)方法1:①當(dāng)n為奇數(shù)時(shí),|z+3|-|z-3|=2a,常數(shù)a∈

(32

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當(dāng)n為偶數(shù)時(shí),|z+3|+|z-3|=4a,常數(shù)a∈

(32

,

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因?yàn)?2<a<3,所以a=3,此時(shí)軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過點(diǎn)D(2,2),且點(diǎn)D(2,2)對(duì)應(yīng)的復(fù)數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對(duì)應(yīng)的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對(duì)應(yīng)的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設(shè)點(diǎn)A的坐標(biāo)為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當(dāng)0<43x0≤23即0<x0≤332時(shí),|AB|2min=3-13x20≥43?0<x0≤5當(dāng)43x0>23即x0>332時(shí),|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)20.使關(guān)于的不等式有解的實(shí)數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。21.在市場(chǎng)上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場(chǎng)上買到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場(chǎng)上買到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66522.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.23.某科目考試有30道題每小題有三個(gè)選項(xiàng),每題2分,另有20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè)答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個(gè)選項(xiàng),每題2分,每題只有一個(gè),某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè),某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.24.已知不等式a≤對(duì)x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對(duì)x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.25.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,4)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為()

A.(-2,1,-4)

B.(-2,-1,-4)

C.(2,1,-4)

D.(2,-1,4)答案:B26.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運(yùn)算”的下位

答案:D27.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號(hào)的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡(jiǎn)單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D28.下面為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A29.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13230.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D31.已知空間兩點(diǎn)A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A32.給出下列四個(gè)命題:

①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個(gè)數(shù)是()

A.1

B.2

C.3

D.4答案:C33.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.34.設(shè)x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A35.下列語(yǔ)句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學(xué)生嗎?

④一個(gè)正數(shù)不是素?cái)?shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因?yàn)閤2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因?yàn)閤2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.36.高二年級(jí)某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級(jí)某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.37.在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D38.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對(duì)應(yīng)的點(diǎn)在第四象限,故選D.39.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B40.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;

④拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.

其中正確命題的標(biāo)號(hào)是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù),如這個(gè)常數(shù)正好為兩個(gè)點(diǎn)的距離,則動(dòng)點(diǎn)的軌跡是兩點(diǎn)的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.故④正確.故為:②④.41.設(shè)O、A、B、C為平面上四個(gè)點(diǎn),(

A.2

B.2

C.3

D.3答案:C42.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個(gè)點(diǎn)

B.2個(gè)點(diǎn)

C.1個(gè)點(diǎn)

D.四條直線答案:D43.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大?。?/p>

(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O(shè)為原點(diǎn),CB、AF、OE所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.設(shè)異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.44.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于

______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.45.以下命題:

①兩個(gè)共線向量是指在同一直線上的兩個(gè)向量;

②共線的兩個(gè)向量互相平行;

③共面的三個(gè)向量是指在同一平面內(nèi)的三個(gè)向量;

④共面的三個(gè)向量是指平行于同一平面的三個(gè)向量.

其中正確命題的序號(hào)是______.答案:解①根據(jù)共面與共線向量的定義可知①錯(cuò)誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯(cuò)誤.④根據(jù)共面向量的定義可知④正確.故為:②④.46.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C47.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個(gè)數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對(duì)于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C48.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時(shí),方程的解集是有限集;滿足條件______

時(shí),方程的解集是無限集;滿足條件______

時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.49.如圖,四邊形OABC是邊長(zhǎng)為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B50.從一批產(chǎn)品中取出三件,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是()

A.A與C互斥

B.B與C互斥

C.任兩個(gè)均互斥

D.任兩個(gè)均不互斥答案:B第3卷一.綜合題(共50題)1.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)2.如圖是一個(gè)空間幾何體的三視圖,試用斜二測(cè)畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺(tái),畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺(tái)下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺(tái)的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺(tái)上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺(tái)的直觀圖

(如圖2).3.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.4.如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,

.則⊙O的半徑為(

).

A.6

B.13

C.

D.答案:C解析:分析:延長(zhǎng)AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長(zhǎng)AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.5.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,故選D.6.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:327.將4封不同的信隨機(jī)地投入到3個(gè)信箱里,記有信的信箱個(gè)數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是8.已知函數(shù)f(x)=2x,數(shù)列{an}滿足a1=f(0),且f(an+1)=(n∈N*),

(1)證明數(shù)列{an}是等差數(shù)列,并求a2010的值;

(2)分別求出滿足下列三個(gè)不等式:,

的k的取值范圍,并求出同時(shí)滿足三個(gè)不等式的k的最大值;

(3)若不等式對(duì)一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數(shù)列,∴,∴。(2)由,得;,得;,得,,∴當(dāng)k同時(shí)滿足三個(gè)不等式時(shí),。(3)由,得恒成立,令,則,,∴,∵F(n)是關(guān)于n的單調(diào)增函數(shù),∴,∴。9.下列集合中,不同于另外三個(gè)集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對(duì)于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個(gè)元素,即方程“x=0”.故選D.10.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),現(xiàn)從袋中任意取出3個(gè)小球,假設(shè)每個(gè)小球被取出的可能性都相等.

(Ⅰ)求取出的3個(gè)小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同的概率;

(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個(gè)小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,則X≥4包含取出的3個(gè)小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個(gè)小球上的最大數(shù)字為4時(shí),P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個(gè)小球上的最大數(shù)字為5時(shí),P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.11.已知直角三角形兩直角邊長(zhǎng)為a,b,求斜邊長(zhǎng)c的一個(gè)算法分下列三步:

①計(jì)算c=a2+b2;

②輸入直角三角形兩直角邊長(zhǎng)a,b的值;

③輸出斜邊長(zhǎng)c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長(zhǎng)a,b的值,第二步:計(jì)算c=a2+b2,第三步:輸出斜邊長(zhǎng)c的值;這樣一來,就是斜邊長(zhǎng)c的一個(gè)算法.故選D.12.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。13.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.14.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計(jì)算a2,a3,a4

(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個(gè)猜想.①當(dāng)n=1時(shí),a1=1,命題成立.②假設(shè)n=k時(shí)命題成立,即ak=2k+1當(dāng)n=k+1時(shí)ak+1=2a

k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對(duì)一切n∈N*均成立.15.已知直線l:kx-y+1+2k=0.

(1)證明:直線l過定點(diǎn);

(2)若直線l交x負(fù)半軸于A,交y正半軸于B,△AOB的面積為S,試求S的最小值并求出此時(shí)直線l的方程.答案:(1)證明:由已知得k(x+2)+(1-y)=0,∴無論k取何值,直線過定點(diǎn)(-2,1).(2)令y=0得A點(diǎn)坐標(biāo)為(-2-1k,0),令x=0得B點(diǎn)坐標(biāo)為(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.當(dāng)且僅當(dāng)4k=1k,即k=12時(shí)取等號(hào).即△AOB的面積的最小值為4,此時(shí)直線l的方程為12x-y+1+1=0.即x-2y+4=016.設(shè)O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點(diǎn)的向量

C.相等向量

D.模相等的向量答案:D17.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實(shí)數(shù)k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為218.用綜合法或分析法證明:

(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)

2>(8+5)2,即證明242>

240,也就是證明42>40,上式顯然成立,故原結(jié)論成立.19.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,A中的2個(gè)函數(shù)的值域不同,B中的2個(gè)函數(shù)的定義域不同,C中的2個(gè)函數(shù)的對(duì)應(yīng)關(guān)系不同,只有D的2個(gè)函數(shù)的定義域、值域、對(duì)應(yīng)關(guān)系完全相同,故選D.20.設(shè),則之間的大小關(guān)系是

.答案:b>a>c解析:略21.點(diǎn)P(1,3,5)關(guān)于平面xoz對(duì)稱的點(diǎn)是Q,則向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B22.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:323.在邊長(zhǎng)為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故為32.24.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D25.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長(zhǎng)等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個(gè)法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個(gè)法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3326.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,527.下列語(yǔ)句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學(xué)生嗎?

④一個(gè)正數(shù)不是素?cái)?shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因?yàn)閤2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因?yàn)閤2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.28.命題“對(duì)于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”過程應(yīng)用了()

A.分析發(fā)

B.綜合法

C.綜合法、分析法結(jié)合使用

D.間接證法答案:B29.拋物線x=14ay2的焦點(diǎn)坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點(diǎn)坐標(biāo)是(a,0)故選B.30.點(diǎn)P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D31.化簡(jiǎn):AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.32.圓錐的側(cè)面展開圖是一個(gè)半徑長(zhǎng)為4的半圓,則此圓錐的底面半徑為

______.答案:設(shè)圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.33.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()

A.

B.

C.

D.答案:D34.

如圖梯形A1B1C1D1是一平面圖形ABCD的斜二側(cè)直觀圖,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,則四邊形ABCD的面積是()

A.10

B.5

C.2

D.10

答案:B35.已知直線l:ax+by=1(ab>0)經(jīng)過點(diǎn)P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論