版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年沈陽(yáng)北軟信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±2232.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C3.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿足xn<xn+1,或者對(duì)任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+14.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是
______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).5.已知直線l過點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12
ab≥4,故為4.6.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.7.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點(diǎn)O、半徑是a2+b2的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(2,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為3.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;
(3)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準(zhǔn)圓”的方程為x2+y2=4;(2)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設(shè)過點(diǎn)P且與橢圓相切的直線l的方程為my=x-2,聯(lián)立my=x-2x23+y2=1,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取點(diǎn)A(2,0).設(shè)點(diǎn)B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點(diǎn)B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)8.向量a=(2,-1,4)與b=(-1,1,1)的夾角的余弦值為______.答案:∵a?b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a?b|a|
|b|=121?3=721.故為721.9.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長(zhǎng)分別為|a|、|b|、|c|的三角形()
A.是銳角三角形
B.是直角三角形
C.是鈍角三角形
D.不存在答案:B10.正十邊形的一個(gè)內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個(gè)內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時(shí).得到一個(gè)內(nèi)角為180°(10-2)10=144°11.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B12.比較大小:a=0.20.5,b=0.50.2,則()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A13.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].14.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立15.在四邊形ABCD中,若=+,則()
A.ABCD為矩形
B.ABCD是菱形
C.ABCD是正方形
D.ABCD是平行四邊形答案:D16.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是
______,過這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時(shí),顯然x=2符合題意;當(dāng)切線斜率存在時(shí),設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.17.若橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為2,它的一個(gè)焦點(diǎn)是(215,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標(biāo)準(zhǔn)方程是x280+y220=1.故為:x280+y220=1.18.方程組的解集是(
)答案:{(5,-4)}19.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()
A.π
B.4
C.4π
D.16答案:C20.某公司招聘員工,經(jīng)過筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時(shí),y=2x+10∈(30,210],又因?yàn)?0∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.21.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°22.直線L1:x-y=0與直線L2:x+y-10=0的交點(diǎn)坐標(biāo)是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A23.(文)若拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合,則實(shí)數(shù)p的值是______.答案:∵x26+y22=1
中a2=6,b2=2,∴c2=4,c=2∴右焦點(diǎn)坐標(biāo)為(2,0)∵拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合∴拋物線y2=2px中p=4故為424.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D25.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>326.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.結(jié)論正確答案:A27.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A28.如圖,從圓O外一點(diǎn)P引兩條直線分別交圓O于點(diǎn)A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長(zhǎng)等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3529.設(shè)a1,a2,…,an為實(shí)數(shù),證明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:證明:不妨設(shè)a1≤a2≤…≤an,則由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.將上述n個(gè)式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式兩邊除以n2,并開方可得:a1+a2+…+ann≤a21+a22+…+a2nn.30.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是
。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()31.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因?yàn)閗=5,結(jié)束循環(huán),輸出結(jié)果S=2+4+6+8=20.故為:20.32.用反證法證明命題“如果a>b>0,那么a2>b2”時(shí),假設(shè)的內(nèi)容應(yīng)是()
A.a(chǎn)2=b2
B.a(chǎn)2<b2
C.a(chǎn)2≤b2
D.a(chǎn)2<b2,且a2=b2答案:C33.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A34.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個(gè)數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.35.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,則()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C36.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()
A.3,2
B.2,3
C.2,30
D.30,2答案:A37.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.38.運(yùn)用三段論推理:
復(fù)數(shù)不可以比較大小,(大前提)
2010和2011都是復(fù)數(shù),(小前提)
2010和2011不可以比較大?。ńY(jié)
論)
該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是______錯(cuò)誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個(gè)前提和一個(gè)結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯(cuò)誤的,該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是大前提錯(cuò)誤.故為:大前提39.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.40.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B41.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:342.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=______.答案:∵隨機(jī)變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故為243.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF
1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.44.在y=2x,y=log2x,y=x2,y=cosx這四個(gè)函數(shù)中,當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立的函數(shù)的個(gè)數(shù)是()A.0B.1C.2D.3答案:當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立,說明函數(shù)一個(gè)遞增的越來越慢的函數(shù)或者是一個(gè)遞減的越來越快的函數(shù)或是一個(gè)先遞增得越來越慢,再遞減得越來越快的函數(shù)考查四個(gè)函數(shù)y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來越慢型,函數(shù)y=cosx在(0,1)是遞減得越來越快型,y=2x,y=x2,這兩個(gè)函數(shù)都是遞增得越來越快型綜上分析知,滿足條件的函數(shù)有兩個(gè)故選C45.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.46.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D47.如圖,從圓O外一點(diǎn)A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長(zhǎng)為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.48.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).49.某教師出了一份三道題的測(cè)試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:250.已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸,拋物線上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,求m的值及拋物線方程.答案:∵拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,其上一點(diǎn)M(3,m)∴設(shè)拋物線方程為y2=2px∵其上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,∴3+p2=5,可得p=4∴拋物線方程為y2=8x.第2卷一.綜合題(共50題)1.命題“當(dāng)AB=AC時(shí),△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題有______個(gè).答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時(shí),AB=AC”為假命題.否命題“當(dāng)AB≠AC時(shí),△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時(shí),AB≠AC”為真命題.故為:2.2.過點(diǎn)A(0,2),且與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有()條.A.1B.2C.3D.4答案:∵點(diǎn)A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對(duì)稱軸平行,故選C.3.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.4.已知隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=0.05且η=5ξ+1,則Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B5.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).6.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.7.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:1148.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.9.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)10.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪ⅰ?1.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長(zhǎng)=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3312.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于______(大前提、小前提、結(jié)論).答案:∵當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),當(dāng)0<a<1時(shí),指數(shù)函數(shù)是一個(gè)減函數(shù)∴y=ax是增函數(shù)這個(gè)大前提是錯(cuò)誤的,從而導(dǎo)致結(jié)論錯(cuò).故為:大前提.13.給出下列四個(gè)命題:
①若兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;
②在平行四邊形ABCD中,一定有;
③若則
④若則
其中正確的命題個(gè)數(shù)是()
A.1
B.2
C.3
D.4答案:C14.下列關(guān)于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因?yàn)樗惴ň哂杏懈F性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.15.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C16.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.17.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點(diǎn)都在直線2x+3y+1=0上,由于兩點(diǎn)確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.18.定點(diǎn)F1,F(xiàn)2,且|F1F2|=8,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=8,則點(diǎn)P的軌跡是()A.橢圓B.圓C.直線D.線段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點(diǎn)P不在直線F1F2上時(shí),根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點(diǎn)P在直線F1F2上時(shí),若點(diǎn)P在F1、F2兩點(diǎn)之外時(shí),可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點(diǎn)P在F1、F2兩點(diǎn)之間(或與F1、F2重合)時(shí),可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點(diǎn)P在直線F1F2上且在F1、F2兩點(diǎn)之間或與F1、F2重合,故點(diǎn)P的軌跡是線段F1F2.故選:D19.直線3x+4y-12=0和3x+4y+3=0間的距離是
______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.20.若矩陣M=1111,則直線x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x',y')是所得的直線上一點(diǎn),[1
1][x']=[x0][1
1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.21.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C22.方程組的解集為()
A.{2,1}
B.{1,2}
C.{(2,1)}
D.(2,1)答案:C23.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.24.證明空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.25.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
B.40°
C.60°
D.70°答案:D26.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是[
]
A.4
B.-4
C.-5
D.6答案:A27.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.28.下列各個(gè)對(duì)應(yīng)中,從A到B構(gòu)成映射的是()A.
B.
C.
D.
答案:按照映射的定義,A中的任何一個(gè)元素在集合B中都有唯一確定的元素與之對(duì)應(yīng).而在選項(xiàng)A和選項(xiàng)B中,前一個(gè)集合中的元素2在后一個(gè)集合中沒有元素與之對(duì)應(yīng),故不符合映射的定義.選項(xiàng)C中,前一個(gè)集合中的元素1在后一集合中有2個(gè)元素和它對(duì)應(yīng),也不符合映射的定義,只有選項(xiàng)D滿足映射的定義,故選D.29.不等式的解集是
(
)A.B.C.D.答案:B解析:當(dāng)時(shí),不等式成立;當(dāng)時(shí),不等式可化為,解得綜上,原不等式解集為故選B30.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C31.已知O、A、M、B為平面上四點(diǎn),且,則()
A.點(diǎn)M在線段AB上
B.點(diǎn)B在線段AM上
C.點(diǎn)A在線段BM上
D.O、A、M、B四點(diǎn)一定共線答案:B32.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時(shí),5t2-2t+2的最小值為95所以當(dāng)t=15時(shí),|b-a|的最小值是95=355故為:35533.下列語(yǔ)句不屬于基本算法語(yǔ)句的是()
A.賦值語(yǔ)句
B.運(yùn)算語(yǔ)句
C.條件語(yǔ)句
D.循環(huán)語(yǔ)句答案:B34.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].35.小李在一旅游景區(qū)附近租下一個(gè)小店面賣紀(jì)念品和T恤,由于經(jīng)營(yíng)條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營(yíng),已知進(jìn)貨價(jià)為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤(rùn)是18元,每件紀(jì)念品的利潤(rùn)是20元,問怎樣進(jìn)貨才能使他的利潤(rùn)最大,最大利潤(rùn)為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤(rùn)為z元,由題意得x、y滿足的約束條件為:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個(gè)頂點(diǎn)坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時(shí)取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時(shí),z取最大值即進(jìn)50件T恤,12件紀(jì)念品時(shí),可獲最大利潤(rùn),最大利潤(rùn)為1140元.36.參數(shù)方程為t為參數(shù))表示的曲線是()
A.一條直線
B.兩條直線
C.一條射線
D.兩條射線答案:D37.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語(yǔ)句正確一組是()
A.a(chǎn)=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a(chǎn)=cc=bb=a答案:B38.對(duì)于空間中的三個(gè)向量,
,
,它們一定是()
A.共面向量
B.共線向量
C.不共面向量
D.以上均不對(duì)答案:A39.某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人至少有兩次擊中目標(biāo)的概率為()
A.
B.
C.
D.答案:A40.要使直線y=kx+1(k∈R)與焦點(diǎn)在x軸上的橢圓x27+y2a=1總有公共點(diǎn),實(shí)數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點(diǎn)在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(diǎn)(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點(diǎn),則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實(shí)數(shù)a的取值范圍是[1,7).故為[1,7).41.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)42.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c43.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點(diǎn),且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C44.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以兩條對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)
設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.45.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C46.某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動(dòng)員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.47.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C48.在平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為______.答案:∵平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn),橫坐標(biāo)小于0,縱坐標(biāo)大于0,∴在平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.49.用冒泡法對(duì)43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A50.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°第3卷一.綜合題(共50題)1.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.
B.
C.5
D.3答案:A2.以A(1,5)、B(5,1)、C(-9,-9)為頂點(diǎn)的三角形是()
A.等邊三角形
B.等腰三角形
C.不等邊三角形
D.直角三角形答案:B3.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,E、F分別為棱AB、BC的中點(diǎn).
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點(diǎn)D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.4.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項(xiàng)為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項(xiàng)為B5.過直線y=x上的一點(diǎn)作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于y=x對(duì)稱時(shí),它們之間的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C6.在輸入語(yǔ)句中,若同時(shí)輸入多個(gè)變量,則變量之間的分隔符號(hào)是()
A.逗號(hào)
B.空格
C.分號(hào)
D.頓號(hào)答案:A7.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當(dāng)a=0b=0時(shí),違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.8.設(shè)斜率為2的直線l過拋物線y2=ax(a>0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為______.答案:焦點(diǎn)坐標(biāo)(a4,0),|0F|=a4,直線的點(diǎn)斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x9.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12410.已知e1
,
e2是夾角為60°的兩個(gè)單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:711.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提錯(cuò)都導(dǎo)致結(jié)論錯(cuò)答案:A12.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()
A.
B.
C.±
D.±答案:C13.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運(yùn)算規(guī)則計(jì)算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對(duì)比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..14.極坐標(biāo)方程ρcos2θ=0表示的曲線為()
A.極點(diǎn)
B.極軸
C.一條直線
D.兩條相交直線答案:D15.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個(gè)向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B16.已知橢圓的短軸長(zhǎng)等于2,長(zhǎng)軸端點(diǎn)與短軸端點(diǎn)間的距離等于5,則此橢圓的標(biāo)準(zhǔn)方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標(biāo)準(zhǔn)方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.17.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點(diǎn)B都落在邊AD上,將B的落點(diǎn)記為B′,其中EF為折痕,點(diǎn)F也可落在邊CD上,過B′作B′H∥CD交EF于點(diǎn)H,則點(diǎn)H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點(diǎn)H到定點(diǎn)B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點(diǎn)H的軌跡為:拋物線,(拋物線的一部分)故選D.18.4位學(xué)生與2位教師并坐合影留念,針對(duì)下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)
(1)教師必須坐在中間;
(2)教師不能坐在兩端,但要坐在一起;
(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個(gè)整體,可以交換位置,有2種坐法,將這個(gè)“整體”插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,有A32種坐法,則共有A44A32=144種坐法..19.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應(yīng)填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當(dāng)滿足條件是x是奇數(shù),不滿足條件時(shí)x為偶數(shù)故(1)中應(yīng)填寫r=1故為:r=120.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線,所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).21.圖為一個(gè)幾何體的三視國(guó)科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長(zhǎng)為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C22.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時(shí),由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根時(shí),-1≤a≤178故為:-1≤a≤17823.如圖,平面內(nèi)有三個(gè)向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.24.閱讀程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B25.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>26.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()
A.
B.
C.
D.
答案:A27.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.28.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.29.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍
______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.30.過點(diǎn)A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=031.參數(shù)方程x=3cosθy=4sinθ,(θ為參數(shù))化為普通方程是______.答案:由參數(shù)方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡(jiǎn)得x29+y216=1,即為橢圓的普通方程故為:x29+y216=132.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長(zhǎng)線上,且滿足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).33.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C34.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對(duì)該產(chǎn)品進(jìn)行測(cè)試,設(shè)第ε次首次取到正品,則P(ε=3)等于()
A.
B.
C.
D.答案
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教新版必修1物理下冊(cè)階段測(cè)試試卷含答案
- 2025年北師大新版高三生物下冊(cè)月考試卷含答案
- 2025年中圖版七年級(jí)科學(xué)下冊(cè)月考試卷
- 2024版?zhèn)€人購(gòu)房借款擔(dān)保合同
- 二零二五年度液化石油氣購(gòu)銷合同3篇
- 2025年人教新課標(biāo)六年級(jí)語(yǔ)文上冊(cè)階段測(cè)試試卷
- 二零二五年度紅磚行業(yè)技術(shù)交流合同技術(shù)合作項(xiàng)目協(xié)議3篇
- 2025年人教版九年級(jí)生物下冊(cè)階段測(cè)試試卷含答案
- 二手車交易合同2024版:售后服務(wù)明確版一
- 2025年彩鋼板房拆除與施工現(xiàn)場(chǎng)臨時(shí)用電安全協(xié)議3篇
- 企業(yè)財(cái)務(wù)三年戰(zhàn)略規(guī)劃
- 提高膿毒性休克患者1h集束化措施落實(shí)率
- 山東省濟(jì)南市天橋區(qū)2024-2025學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
- 2024年人教版八年級(jí)語(yǔ)文上冊(cè)期末考試卷(附答案)
- 2024測(cè)繪個(gè)人年終工作總結(jié)
- 遼寧省大連市2023-2024學(xué)年高三上學(xué)期雙基測(cè)試(期末考試) 物理 含解析
- 勞務(wù)分包的工程施工組織設(shè)計(jì)方案
- DB11 637-2015 房屋結(jié)構(gòu)綜合安全性鑒定標(biāo)準(zhǔn)
- 18項(xiàng)醫(yī)療質(zhì)量安全核心制度
- 制造業(yè)生產(chǎn)流程作業(yè)指導(dǎo)書
評(píng)論
0/150
提交評(píng)論