版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年安徽糧食工程職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°2.已知復(fù)數(shù)z=2+i,則z2對(duì)應(yīng)的點(diǎn)在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復(fù)數(shù)z2的實(shí)部等于3,虛部等于4.所以z2對(duì)應(yīng)的點(diǎn)在第Ⅰ象限.故選A.3.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D4.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0
B=φA(2)當(dāng)a=-1時(shí)△=0
B={0}A(3)當(dāng)a>-1時(shí)△>0
要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=15.不等式﹣2x+1>0的解集是(
).答案:{x|x<}6.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點(diǎn)集B.第四象限內(nèi)的點(diǎn)集C.第二、四象限內(nèi)的點(diǎn)集D.不在第一、三象限內(nèi)的點(diǎn)的集合答案:∵xy≤0,∴xy<0或xy=0當(dāng)xy<0時(shí),則有x<0y>0或x>0y<0,點(diǎn)(x,y)在二、四象限,當(dāng)xy=0時(shí),則有x=0或y=0,點(diǎn)(x,y)在坐標(biāo)軸上,故選D.7.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF
1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.8.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.
(1)相似三角形的對(duì)應(yīng)角相等;
(2)當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù).答案:(1)若兩個(gè)三角形相似,則它們的對(duì)應(yīng)角相等.條件p:三角形相似,結(jié)論q:對(duì)應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).9.給定兩個(gè)長(zhǎng)度為1且互相垂直的平面向量OA和OB,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng).若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5210.如圖,從圓O外一點(diǎn)P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:211.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A12.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長(zhǎng)為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B13.如圖,割線PAB經(jīng)過圓心O,PC切圓O于點(diǎn)C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點(diǎn)C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π14.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長(zhǎng)定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.15.斜二測(cè)畫法的規(guī)則是:
(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖
時(shí),它們分別對(duì)應(yīng)x′和y′軸,兩軸交于點(diǎn)o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長(zhǎng)度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測(cè)畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長(zhǎng)度不變;長(zhǎng)度減半16.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.
B.
C.
D.
答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號(hào)知若y=ax遞增,則y=x+a與y軸的交點(diǎn)在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點(diǎn)在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.17.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.18.直線被圓x2+y2=9截得的弦長(zhǎng)為(
)
A.
B.
C.
D.答案:B19.經(jīng)過拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A20.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A21.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C22.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()
A.
B.
C.
D.答案:C23.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B24.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C25.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.26.用數(shù)學(xué)歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124
(n∈N,n≥1)答案:證明:(1)當(dāng)n=1時(shí),左邊=12>1124,∴n=1時(shí)成立(2分)(2)假設(shè)當(dāng)n=k(k≥1)時(shí)成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當(dāng)n=k+1時(shí),左邊=1k+2+1k+3+…+1k+k
+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1
+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時(shí)也成立(7分)根據(jù)(1)(2)可得不等式對(duì)所有的n≥1都成立(8分)27.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為122528.已知矩形ABCD,R、P分別在邊CD、BC上,E、F分別為AP、PR的中點(diǎn),當(dāng)P在BC上由B向C運(yùn)動(dòng)時(shí),點(diǎn)R在CD上固定不變,設(shè)BP=x,EF=y,那么下列結(jié)論中正確的是()A.y是x的增函數(shù)B.y是x的減函數(shù)C.y隨x先增大后減小D.無論x怎樣變化,y是常數(shù)答案:連接AR,如圖所示:由于點(diǎn)R在CD上固定不變,故AR的長(zhǎng)為定值又∵E、F分別為AP、PR的中點(diǎn),∴EF為△APR的中位線,則EF=12AR為定值故無論x怎樣變化,y是常數(shù)故選D29.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()
A.-
B.-6
C.6
D.答案:C30.設(shè)復(fù)數(shù)z的實(shí)部是
12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實(shí)部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.31.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C32.行駛中的汽車,在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號(hào)汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗(yàn),有關(guān)試驗(yàn)數(shù)據(jù)如圖所示,其中,
(1)求n的值;
(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因?yàn)関≥0,所以0≤v≤60,即行駛的最大速度為60km/h。33.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.34.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C35.利用“直接插入排序法”給按從大到小的順序排序,
當(dāng)插入第四個(gè)數(shù)時(shí),實(shí)際是插入哪兩個(gè)數(shù)之間(
)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;36.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.37.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值確定答案:C38.有四個(gè)游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤的序號(hào)______
答案:(1)游戲盤的中獎(jiǎng)概率為
38,(2)游戲盤的中獎(jiǎng)概率為
14,(3)游戲盤的中獎(jiǎng)概率為
26=13,(4)游戲盤的中獎(jiǎng)概率為
13,(1)游戲盤的中獎(jiǎng)概率最大.故為:(1).39.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(
)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B40.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn41.已知在△ABC和點(diǎn)M滿足
MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:342.一個(gè)總體中有100個(gè)個(gè)體,隨機(jī)編號(hào)為0,1,2,3,…,99,依編號(hào)順序平均分成10個(gè)小組,組號(hào)依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個(gè)容量為10的樣本,規(guī)定如果在第1組隨機(jī)抽取的號(hào)碼為m,那么在第k組中抽取的號(hào)碼個(gè)位數(shù)字與m+k號(hào)碼的個(gè)位數(shù)字相同,若m=6,則在第7組中抽取的號(hào)碼是()
A.66
B.76
C.63
D.73答案:C43.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i44.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()
A.4
B.2
C.4
D.3答案:A45.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.46.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>347.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個(gè)力f1、f2、f3.試求此三個(gè)力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個(gè)單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.48.點(diǎn)M的直角坐標(biāo)為(-3,-1),則點(diǎn)M的極坐標(biāo)為______.答案:∵M(jìn)的直角坐標(biāo)為(-3,-1),設(shè)M的極坐標(biāo)為(ρ,θ),則ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的極坐標(biāo)為(2,7π6).49.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.50.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線,所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).第2卷一.綜合題(共50題)1.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:32.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.3.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個(gè)等式兩邊分別平方,再相加,即可消去含θ的項(xiàng),所以有(x-1)2+y2=4.4.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點(diǎn)),求向量OB;
(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時(shí),求OA?OC.答案:(1)∵點(diǎn)A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時(shí),n=24;當(dāng)t=-8時(shí),n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時(shí),tsinθ取最大值32k,有32k=4,得k=8.這時(shí),sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.5.一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線AB長(zhǎng)為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長(zhǎng)為______cm.答案:畫出圓臺(tái)的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.6.在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長(zhǎng)等于______.答案:∵在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長(zhǎng)=2×52-1=46.故為46.7.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長(zhǎng)線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α8.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D9.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x210.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.11.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.12.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.13.請(qǐng)寫出所給三視圖表示的簡(jiǎn)單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個(gè)底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體14.1
甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.答案:見解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺(tái)機(jī)床各自加工的零件是一等品的事件①②③15.在△ABC中,已知角A,B,C所對(duì)的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.16.已知0≤θ<2π,復(fù)數(shù)icosθ+isinθ>0,則θ的值是()A.π2B.3π2C.(0,π)內(nèi)的任意值D.(0,π2)∪(3π2,2π)內(nèi)的任意值答案:復(fù)數(shù)icosθ+isinθ>0,可得icosθ+sinθ>0,因?yàn)?≤θ<2π,所以θ=π2.故選A.17.在平面直角坐標(biāo)系xOy中,橢圓x2a2+y2b2=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑作圓M,若過P(a2c,0)作圓M的兩條切線相互垂直,則橢圓的離心率為______.答案:設(shè)切線PA、PB互相垂直,又半徑OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故為22.18.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對(duì)事件:
①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;
②“取出兩只紅球和一只白球”與“取出3只紅球”;
③“取出3只紅球”與“取出的3只球中至少有一只白球”;
④“取出3只紅球”與“取出3只白球”.
其中是對(duì)立事件的有______(只填序號(hào)).答案:對(duì)于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時(shí)發(fā)生,而且它們的并事件是必然事件,故它們是對(duì)立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.故為③.19.整數(shù)630的正約數(shù)(包括1和630)共有______個(gè).答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計(jì)數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個(gè).故為:24.20.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.21.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()
A.4
B.15
C.7
D.3答案:D22.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.23.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對(duì)應(yīng)的關(guān)系選A.故選A.24.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,A中的2個(gè)函數(shù)的值域不同,B中的2個(gè)函數(shù)的定義域不同,C中的2個(gè)函數(shù)的對(duì)應(yīng)關(guān)系不同,只有D的2個(gè)函數(shù)的定義域、值域、對(duì)應(yīng)關(guān)系完全相同,故選D.25.設(shè)向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B26.已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸,拋物線上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,求m的值及拋物線方程.答案:∵拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,其上一點(diǎn)M(3,m)∴設(shè)拋物線方程為y2=2px∵其上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,∴3+p2=5,可得p=4∴拋物線方程為y2=8x.27.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥028.以過橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是()
A.相交
B.相切
C.相離
D.不能確定答案:C29.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A30.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C31.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.32.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn),n∈N*.已知OP1=(2,0),則OP2010的坐標(biāo)為______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此類推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐標(biāo)為(2,4018)故為:(2,4018)33.命題“對(duì)于任意角θ,cos4θ-sin4θ=cos2θ”的證明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”過程應(yīng)用了()
A.分析發(fā)
B.綜合法
C.綜合法、分析法結(jié)合使用
D.間接證法答案:B34.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測(cè),這種抽樣方法是()
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B35.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C36.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).37.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()
A.p真q真
B.p真q假
C.p假q真
D.p假q假答案:D38.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.39.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個(gè)元素,那么實(shí)數(shù)m的取值范圍是
______.答案:如果P∩Q有且只有一個(gè)元素,即函數(shù)y=m與y=ax+1(a>0,且a≠1)圖象只有一個(gè)公共點(diǎn).∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)40.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B41.經(jīng)過點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x42.若直線的參數(shù)方程為,則直線的斜率為(
)A.B.C.D.答案:D43.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()
A.
B.
C.
D.答案:C44.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.45.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了
100名學(xué)生,測(cè)試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測(cè)學(xué)生引體向上的平均數(shù)分別是:甲校______個(gè),乙校______個(gè).
(2)若5個(gè)以下(不含5個(gè))為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個(gè)以上(含15個(gè))為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學(xué)的統(tǒng)計(jì)知識(shí)對(duì)兩所學(xué)校學(xué)生的身體狀況作一個(gè)比較.你的結(jié)論是______.答案:(1)甲校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些46.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>347.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語成績(jī),i=4表示語數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B48.(坐標(biāo)系與參數(shù)方程)
從極點(diǎn)O作直線與另一直線ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)R為直線ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為149.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c50.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對(duì)值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.第3卷一.綜合題(共50題)1.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A2.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.3.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-154.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).
(I)求橢圓C的離心率:
(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且2|AQ|2=1|AM|2+1|AN|2,求點(diǎn)Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設(shè)點(diǎn)Q的坐標(biāo)為(x,y)(1)當(dāng)直線l與x軸垂直時(shí),直線l與橢圓C交于(0,1)、(0,-1)兩點(diǎn),此時(shí)點(diǎn)Q的坐標(biāo)為(0,2-355)(2)當(dāng)直線l與x軸不垂直時(shí),可設(shè)其方程為y=kx+2,因?yàn)镸,N在直線l上,可設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡(jiǎn)得x2=1810k2-3…③因?yàn)辄c(diǎn)Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡(jiǎn)得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點(diǎn)Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分5.為研究變量x和y的線性相關(guān)性,甲、乙二人分別作了研究,利用線性回歸方法得到回歸直線方程l1和l2,兩人計(jì)算知.x相同,.y也相同,下列正確的是()A.l1與l2一定重合B.l1與l2一定平行C.l1與l2相交于點(diǎn)(.x,.y)D.無法判斷l(xiāng)1和l2是否相交答案:∵兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,∴兩組數(shù)據(jù)的樣本中心點(diǎn)是(.x,.y)∵回歸直線經(jīng)過樣本的中心點(diǎn),∴l(xiāng)1和l2都過(.x,.y).故選C.6.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B7.若不等式的解集,則實(shí)數(shù)=___________.答案:-48.已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[
]A
.4
B.1
C.10
D.11答案:D9.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對(duì)答案:B10.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x11.下列命題錯(cuò)誤的是(
)A.命題“若,則中至少有一個(gè)為零”的否定是:“若,則都不為零”。B.對(duì)于命題,使得;則是,均有。C.命題“若,則方程有實(shí)根”的逆否命題為:“若方程無實(shí)根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.12.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)600到OD,則PD的長(zhǎng)為()
A.3
B.
C.
D.
答案:D13.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)14.選修4-4參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動(dòng)圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設(shè)得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.15.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且,那么(
)
A.
B.
C.
D.2
答案:A16.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個(gè)奇數(shù),它的立方不是奇數(shù)
C.存在一個(gè)奇數(shù),它的立方不是奇數(shù)
D.不存在一個(gè)奇數(shù),它的立方是奇數(shù)答案:C17.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.18.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C19.解下列關(guān)于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集為解析:(1)
解:(2)
解:分析該題要設(shè)法去掉絕對(duì)值符號(hào),可由去分類討論當(dāng)時(shí)原不等式等價(jià)于
故得不等式的解集為所以原不等式的解集為20.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.21.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()
A.在圓內(nèi)
B.在圓外
C.在圓上
D.與t有關(guān)答案:C22.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個(gè)為0C.a(chǎn)和b至少有一個(gè)不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價(jià)條件是a≠0或b≠0,即兩者中至少有一個(gè)不為0,對(duì)照四個(gè)選項(xiàng),只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個(gè)為0包括了兩個(gè)數(shù)都是0,故不對(duì);D中只是兩個(gè)數(shù)僅有一個(gè)為0,概括不全面,故不對(duì);故選C23.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2
012”時(shí),一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要條件.故選A.24.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.25.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.26.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A27.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.
(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?
(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.28.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)29.如圖,圓心角∠AOB=120°,P是AB上任一點(diǎn)(不與A,B重合),點(diǎn)C在AP的延長(zhǎng)線上,則∠BPC等于______.
答案:解:設(shè)點(diǎn)E是優(yōu)弧AB(不與A、B重合)上的一點(diǎn),∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.30.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.31.若A是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),過點(diǎn)A向y軸作垂線,垂足為B,則線段AB中點(diǎn)C的軌跡方程為()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D32.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.33.下表為廣州亞運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項(xiàng)目票價(jià)(元/場(chǎng))足球
籃球
乒乓球100
80
60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費(fèi)用不超過足球比賽門票的費(fèi)用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。34.已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因?yàn)?x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當(dāng)且僅當(dāng)x2=y2+z2時(shí),等號(hào)成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當(dāng)且僅當(dāng)x5=y4=z3時(shí),等號(hào)成立.綜上,9x2+9y2+z2≥2?32=18.35.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點(diǎn),DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小學(xué)學(xué)校工作總結(jié)參考模板(三篇)
- 2024年學(xué)校總務(wù)工作計(jì)劃范本(二篇)
- 2024年少先隊(duì)輔導(dǎo)員工作總結(jié)參考(二篇)
- 2024年年度銷售工作計(jì)劃模版(二篇)
- 2024年小學(xué)教師個(gè)人教學(xué)工作總結(jié)范本(四篇)
- 2024年學(xué)校消毒通風(fēng)制度樣本(二篇)
- 2024年衛(wèi)生室管理制度樣本(五篇)
- 2024年員工個(gè)人年終工作總結(jié)范例(二篇)
- 2024年工商部門工作計(jì)劃范本(五篇)
- 【《N公司員工培訓(xùn)問題與完善策略(含問卷)》9500字(論文)】
- DSC教學(xué)講解課件
- 代理記賬業(yè)務(wù)內(nèi)部規(guī)范
- 醫(yī)院進(jìn)修生結(jié)業(yè)鑒定表
- 溫度決生老病死專家講座
- 中國(guó)科學(xué)家光學(xué)之父王大珩的紅色故事PPT大力弘揚(yáng)科學(xué)家精神PPT課件(帶內(nèi)容)
- 字體設(shè)計(jì)課件全
- 配電網(wǎng)工程施工工藝規(guī)范課件
- 中學(xué)生科技小論文寫作技巧
- 2021年蘇州工業(yè)職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘試題及答案解析
- 小學(xué)科學(xué)招聘考試試題含答案(五套)
- 機(jī)械工程師招聘
評(píng)論
0/150
提交評(píng)論