河北省石家莊市正定中學2022年高三沖刺模擬數(shù)學試卷含解析_第1頁
河北省石家莊市正定中學2022年高三沖刺模擬數(shù)學試卷含解析_第2頁
河北省石家莊市正定中學2022年高三沖刺模擬數(shù)學試卷含解析_第3頁
河北省石家莊市正定中學2022年高三沖刺模擬數(shù)學試卷含解析_第4頁
河北省石家莊市正定中學2022年高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.2.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.23.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.4.已知,則()A. B. C. D.5.設全集,集合,.則集合等于()A. B. C. D.6.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調函數(shù),則()A. B. C. D.7.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}8.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.9.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.10.設為等差數(shù)列的前項和,若,則A. B.C. D.11.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1012.設向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.14.某中學數(shù)學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數(shù)為81,乙組5名同學成績的中位數(shù)為73,則x-y的值為________.15.拋物線上到其焦點的距離為的點的個數(shù)為________.16.(5分)已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.18.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+19.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.20.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.21.(12分)已知函數(shù),將的圖象向左移個單位,得到函數(shù)的圖象.(1)若,求的單調區(qū)間;(2)若,的一條對稱軸是,求在的值域.22.(10分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.2.B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.3.B【解析】

①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.4.C【解析】

利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.5.A【解析】

先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.6.D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數(shù),屬于中檔題.7.B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.8.A【解析】

先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.9.D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.10.C【解析】

根據(jù)等差數(shù)列的性質可得,即,所以,故選C.11.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構建和的方程組求通項公式.12.B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關鍵.14.【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學成績的平均數(shù)為,解得;又乙班5名同學的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.15.【解析】

設拋物線上任意一點的坐標為,根據(jù)拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.16.【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調遞增,而在上也單調遞增,由復合函數(shù)的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調遞增,可得,則,解得,故不等式的解集為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】

(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;(2)直線的參數(shù)方程代入圓的直角坐標方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結果.【詳解】(1)由,得,所以曲線的直角坐標方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數(shù)的關系,得,.因為點的直角坐標為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應的參數(shù)可以把普通方程化為參數(shù)方程,利用關系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應問題.18.(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應用問題,以及絕對值三角不等式的應用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應用問題,關鍵是等價轉化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關系,求出參數(shù)范圍.19.(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數(shù)作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【點睛】本題考查利用導數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學生數(shù)形結合的思想,是一道中檔題.20.(1)詳見解析;(2)詳見解析.【解析】

(1)連結根據(jù)中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎題.21.(1)增區(qū)間為,減區(qū)間為;(2).【解析】

(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調性,得出結論;(2)由題意利用余弦函數(shù)的圖象的對稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結論.【詳解】由題意得(1)向左平移個單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調增區(qū)間為,減區(qū)間為;(2)由題易知,,因為的一條對稱軸是,所以,,解得,.又因為,所以,即.因為,所以,則,所以在的值域是.【點睛】本題主要考查三角函數(shù)圖象變換規(guī)律,余弦函數(shù)圖象的對稱性,余弦函數(shù)的單調性和值域,屬于中檔題.22.(1);(2)見解析【解析】

(1)由面積最大值可得,又,以及,解得,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論