2023年長(zhǎng)春師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年長(zhǎng)春師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年長(zhǎng)春師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年長(zhǎng)春師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年長(zhǎng)春師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年長(zhǎng)春師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.如果一個(gè)圓錐的正視圖是邊長(zhǎng)為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個(gè)圓錐的表面積是12×2π×2+π?12=3π.故:3π.2.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.3.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°4.給定兩個(gè)長(zhǎng)度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].5.已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.6.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項(xiàng)公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.7.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)8.在下面的圖示中,結(jié)構(gòu)圖是()

A.

B.

C.

D.

答案:B9.列舉兩種證明兩個(gè)三角形相似的方法.答案:三邊對(duì)應(yīng)成比例,兩個(gè)三角形相似,兩邊對(duì)應(yīng)成比例且夾角相等,兩個(gè)三角形相似.10.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立11.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C12.平面向量、的夾角為60°,=(2,0),=1,則=(

A.

B.

C.3

D.7答案:B13.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動(dòng)點(diǎn)P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線的右支.故選B.14.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(

)答案:A15.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運(yùn)載一個(gè)長(zhǎng)方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計(jì)4.2米,箱寬3米,若要求通過(guò)隧道時(shí),車體不得超過(guò)中線.試問(wèn)這輛卡車是否能通過(guò)此隧道,請(qǐng)說(shuō)明理由.答案:建立如圖所示的坐標(biāo)系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因?yàn)?.6+3=4.6>4.2,所以,卡車能夠通過(guò)此隧道.16.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.17.如圖,AB是⊙O的直徑,AD是⊙O的切線,點(diǎn)C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長(zhǎng)為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽R(shí)t△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.18.用隨機(jī)數(shù)表法進(jìn)行抽樣有以下幾個(gè)步驟:①將總體中的個(gè)體編號(hào);②獲取樣本號(hào)碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機(jī)數(shù)表法進(jìn)行抽樣,包含這樣的步驟,①將總體中的個(gè)體編號(hào);②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號(hào)碼,∴把題目條件中所給的三項(xiàng)排序?yàn)椋孩佗邰冢蔬xC.19.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為______.答案:x2+y2

表示直線2x+y+5=0上的點(diǎn)與原點(diǎn)的距離,其最小值就是原點(diǎn)到直線2x+y+5=0的距離|0+0+5|4+1=5,故為:5.20.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]21.設(shè)△ABC是邊長(zhǎng)為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長(zhǎng)為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:322.下面對(duì)算法描述正確的一項(xiàng)是:()A.算法只能用自然語(yǔ)言來(lái)描述B.算法只能用圖形方式來(lái)表示C.同一問(wèn)題可以有不同的算法D.同一問(wèn)題的算法不同,結(jié)果必然不同答案:算法的特點(diǎn):有窮性,確定性,順序性與正確性,不唯一性,普遍性算法可以用自然語(yǔ)言、圖形語(yǔ)言,程序語(yǔ)言來(lái)表示,故A、B不對(duì)同一問(wèn)題可以用不同的算法來(lái)描述,但結(jié)果一定相同,故D不對(duì).C對(duì).故應(yīng)選C.23.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D24.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)25.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.26.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.27.函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;

(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時(shí)猜想成立.②假設(shè)n=k時(shí)猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說(shuō)n=k+1時(shí)猜想也成立.對(duì)于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時(shí)命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).28.求證:答案:證明見解析解析:證明:此題采用了從第三項(xiàng)開始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。29.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22

(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)有()A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)答案:①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進(jìn)入夏季的地區(qū)有甲、乙、丙三地.故選D.30.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:171.8或148.231.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長(zhǎng)是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.32.A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點(diǎn)為原點(diǎn),正東方向?yàn)閤軸的正方向建立直角坐標(biāo)系,則A(3,0)

B(-3,0)

C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點(diǎn)的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為

x24-y25=1

(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得

x=8(負(fù)值舍去)y=53即

P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)33.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。34.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()

A.AD與CB

B.OA與OC

C.AC與DB

D.DO與OB

答案:D35.在我市新一輪農(nóng)村電網(wǎng)改造升級(jí)過(guò)程中,需要選一個(gè)電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻從小到大安排序號(hào),如果第1個(gè)試點(diǎn)與第2個(gè)試點(diǎn)比較,第1個(gè)試點(diǎn)是一個(gè)好點(diǎn),則第3個(gè)試點(diǎn)值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C36.直線y=33x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:137.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.38.某種肥皂原零售價(jià)每塊2元,凡購(gòu)買2塊以上(包括2塊),商場(chǎng)推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價(jià),其余按原價(jià)的七折銷售;第二種:全部按原價(jià)的八折銷售。你在購(gòu)買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D39.從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個(gè)數(shù)為()

A.432

B.288

C.216

D.108答案:C40.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個(gè)是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個(gè)函數(shù)與函數(shù)y=x

(x≥0)有相同圖象時(shí),這兩個(gè)函數(shù)應(yīng)是同一個(gè)函數(shù).A中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個(gè)函數(shù).B中的函數(shù)和函數(shù)y=x

(x≥0)具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù).C中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個(gè)函數(shù).D中的函數(shù)和函數(shù)y=x

(x≥0)的定義域不同,故不是同一個(gè)函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x

(x≥0)是同一個(gè)函數(shù),具有相同的圖象,故選B.41.對(duì)賦值語(yǔ)句的描述正確的是(

①可以給變量提供初值

②將表達(dá)式的值賦給變量

③可以給一個(gè)變量重復(fù)賦值

④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡(jiǎn)單題,賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。42.是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為O)內(nèi)分別與x軸、y軸正方向相同的兩個(gè)單位向量,且則△OAB的面積等于()

A.15

B.10

C.7.5

D.5答案:D43.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為23.

(1)求比賽三局甲獲勝的概率;

(2)求甲獲勝的概率;

(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3

(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.44.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A45.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對(duì)應(yīng)的關(guān)系選A.故選A.46.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長(zhǎng)是______.答案:過(guò)點(diǎn)A作AM⊥BD與點(diǎn)M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.47.與雙曲線x2-y24=1有共同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線的標(biāo)準(zhǔn)方程為______.答案:設(shè)雙曲線方程為x2-y24=λ∵過(guò)點(diǎn)(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=148.雙曲線的中心是原點(diǎn)O,它的虛軸長(zhǎng)為26,右焦點(diǎn)為F(c,0)(c>0),直線l:x=a2c與x軸交于點(diǎn)A,且|OF|=3|OA|.過(guò)點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn).

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時(shí),PQ方程為x=3.此時(shí),AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時(shí),設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過(guò)點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=049.若向量且與的夾角余弦為則λ等于()

A.4

B.-4

C.

D.答案:C50.用WHILE語(yǔ)句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send第2卷一.綜合題(共50題)1.平面向量、的夾角為60°,=(2,0),=1,則=(

A.

B.

C.3

D.7答案:B2.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:453.求證:菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.答案:已知:如圖,菱形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.求證:菱形ABCD各邊中點(diǎn)M、N、P、Q在以O(shè)為圓心的同一個(gè)圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點(diǎn),∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點(diǎn)在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.4.判斷下列結(jié)出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句是否正確?為什么?

(1)輸出語(yǔ)句INPUT

a;b;c

(2)輸入語(yǔ)句INPUT

x=3

(3)輸出語(yǔ)句PRINT

A=4

(4)輸出語(yǔ)句PRINT

20.3*2

(5)賦值語(yǔ)句3=B

(6)賦值語(yǔ)句

x+y=0

(7)賦值語(yǔ)句A=B=2

(8)賦值語(yǔ)句

T=T*T.答案:(1)輸入語(yǔ)句

INPUT

a;b;c中,變量名之間應(yīng)該用“,”分隔,而不能用“;”分隔,故(1)錯(cuò)誤;(2)輸入語(yǔ)句INPUT

x=3中,命令動(dòng)詞INPUT后面應(yīng)寫成“x=“,3,故(2)錯(cuò)誤;(3)輸出語(yǔ)句PRINT

A=4中,命令動(dòng)詞PRINT后面應(yīng)寫成“A=“,4,故(3)錯(cuò)誤;(4)輸出語(yǔ)句PRINT

20.3*2符合規(guī)則,正確;(5)賦值語(yǔ)句

3=B中,賦值號(hào)左邊必須為變量名,故(5)錯(cuò)誤;(6)賦值語(yǔ)句

x+y=0中,賦值號(hào)左邊不能是表達(dá)式,故(6)錯(cuò)誤;(7)賦值語(yǔ)句

A=B=2中.賦值語(yǔ)句不能連續(xù)賦值,故(7)錯(cuò)誤;(8)賦值語(yǔ)句

T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯(cuò)誤的是(1)、(2)、(3)、(5)、(6)、(7).5.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.6.直線的參數(shù)方程為,l上的點(diǎn)P1對(duì)應(yīng)的參數(shù)是t1,則點(diǎn)P1與P(a,b)之間的距離是(

A.|t1|

B.2|t1|

C.

D.答案:C7.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10

NC.20

ND.102N答案:設(shè)向F1,F(xiàn)2的對(duì)應(yīng)向量分別為OA、OB以O(shè)A、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對(duì)應(yīng)力F1,F(xiàn)2的合力∵F1,F(xiàn)2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A8.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:89.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測(cè),這種抽樣方法是()

A.簡(jiǎn)單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B10.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C11.下列在曲線上的點(diǎn)是()

A.

B.

C.

D.答案:D12.2010年廣州亞運(yùn)會(huì)乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當(dāng),比賽實(shí)行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;

(2)比賽打滿七局的概率.(3)記比賽結(jié)束時(shí)的比賽局?jǐn)?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因?yàn)槭录嗀、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時(shí),比賽的局?jǐn)?shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)13.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。14.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D15.如圖示程序運(yùn)行后的輸出結(jié)果為______.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時(shí)i=9∴ai的值為21故為:2116.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.

(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;

(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.17.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實(shí)數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點(diǎn)共線,由三點(diǎn)共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:118.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無(wú)解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無(wú)窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)19.中,是邊上的中線(如圖).

求證:.

答案:證明見解析解析:取線段所在的直線為軸,點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為.可得,,,.,..20.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來(lái)表示程序的開始和結(jié)束,還要包括處理框,用來(lái)處理程序的執(zhí)行.故為:起止框、處理框.21.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無(wú)法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.22.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長(zhǎng)線于F,若AB=10,CD=8,則切線BF的長(zhǎng)是

______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.23.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(

A.線段

B.雙曲線的一支

C.圓

D.射線答案:D24.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于

4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.25.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選

C.26.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長(zhǎng)為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B27.若矩陣M=1111,則直線x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x',y')是所得的直線上一點(diǎn),[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.28.已知x與y之間的一組數(shù)據(jù)是()

x0123y2468則y與x的線性回歸方程y=bx+a必過(guò)點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,5)∵線性回歸直線一定過(guò)樣本中心點(diǎn),∴y與x的線性回歸方程y=bx+a必過(guò)點(diǎn)(1.5,5)故選D.29.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A是拋物線上一點(diǎn),若·=,則點(diǎn)A的坐標(biāo)是

)A.B.C.D.答案:B解析:略30.(1)求過(guò)兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點(diǎn),且平行于直線2x-y+7=0的直線方程.

(2)求點(diǎn)A(--2,3)關(guān)于直線l:3x-y-1=0對(duì)稱的點(diǎn)B的坐標(biāo).答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點(diǎn)坐標(biāo)是(-1127,-1327).(2)設(shè)與直線2x-y+7=0平行的直線l方程為2x-y+c=0因?yàn)橹本€l過(guò)l1與l2交點(diǎn)(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點(diǎn)P(-2,3)關(guān)于直線3x-y-1=0的對(duì)稱點(diǎn)Q的坐標(biāo)(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對(duì)稱點(diǎn)的坐標(biāo)(10,-1)31.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D32.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.33.(坐標(biāo)系與參數(shù)方程)

從極點(diǎn)O作直線與另一直線ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.

(1)求點(diǎn)P的軌跡方程;

(2)設(shè)R為直線ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為134.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當(dāng)n=2時(shí),n2=4故S(2)=12+13+14故選D35.把38化為二進(jìn)制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗(yàn)證所給的四個(gè)選項(xiàng),在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過(guò)驗(yàn)證知道,B中的二進(jìn)制表示的數(shù)字換成十進(jìn)制以后得到38,故選B.36.拋物線x=14ay2的焦點(diǎn)坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點(diǎn)坐標(biāo)是(a,0)故選B.37.在極坐標(biāo)系中,若等邊三角形ABC(頂點(diǎn)A,B,C按順時(shí)針方向排列)的頂點(diǎn)A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點(diǎn)C的極坐標(biāo)為______.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點(diǎn)O為線段AB的中點(diǎn).故等邊三角形ABC的邊長(zhǎng)為4,AB邊上的高(即點(diǎn)C到AB的距離)OC等于23.設(shè)點(diǎn)C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).38.圓x2+y2=1在矩陣10012對(duì)應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.39.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)40.雙曲線x2n-y2=1(n>1)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.41.將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項(xiàng)和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.42.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B43.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()

A.20°

B.40°

C.60°

D.70°答案:D44.一名同學(xué)先后投擲一枚骰子兩次,第一次向上的點(diǎn)數(shù)記為x,第二次向上的點(diǎn)數(shù)記為y,在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結(jié)果,滿足條件的事件是(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上,當(dāng)x=1,y=6;x=2,y=4;x=3,y=2,共有3種結(jié)果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.45.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.46.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<047.刻畫數(shù)據(jù)的離散程度的度量,下列說(shuō)法正確的是(

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個(gè)數(shù)值來(lái)刻畫數(shù)據(jù)的離散程度;

(3)對(duì)于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C48.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對(duì)事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對(duì)立事件的有______(只填序號(hào)).答案:對(duì)于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.對(duì)于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時(shí)發(fā)生,而且它們的并事件是必然事件,故它們是對(duì)立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時(shí)發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對(duì)立事件.故為③.49.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對(duì)總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.50.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點(diǎn),則k的值是()

A.

B.-

C.2

D.-2答案:B第3卷一.綜合題(共50題)1.某學(xué)校高一年級(jí)男生人數(shù)占該年級(jí)學(xué)生人數(shù)的40%,在一次考試中,男,女平均分?jǐn)?shù)分別為75、80,則這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為______.答案:設(shè)該班男生有x人,女生有y人,這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為a.根據(jù)題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為78.故為:78.2.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.3.命題“對(duì)于正數(shù)a,若a>1,則lg

a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.4.已知定點(diǎn)A(2,0),圓O的方程為x2+y2=8,動(dòng)點(diǎn)M在圓O上,那么∠OMA的最大值是()

A.

B.

C.a(chǎn)rccos

D.a(chǎn)rccos答案:B5.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()

A.相切

B.相離

C.相交

D.相交或相切答案:C6.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個(gè)小于2.答案:證明:假設(shè)1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因?yàn)閍>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立(12分)綜上1+ba,1+ab中至少有一個(gè)小于2.(14分)7.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個(gè)不小于”時(shí),假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個(gè)小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個(gè)小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D8.某醫(yī)院計(jì)劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.

(I)設(shè)所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;

(II)現(xiàn)從10名醫(yī)生中的張強(qiáng)、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長(zhǎng),在張強(qiáng)被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強(qiáng)被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)9.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]10.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn).過(guò)P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:411.設(shè)集合A={0,1,2,3},B={1,2,3,4},則集合A∩B的真子集的個(gè)數(shù)為()A.32個(gè)B.16個(gè)C.8個(gè)D.7個(gè)答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選D.12.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因?yàn)锳C、BC的長(zhǎng)分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽R(shí)t△BCA,∴BD=165,故為:16513.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()

A.

B.

C.

D.答案:D14.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個(gè)交點(diǎn),故k=f(x)x(x>0)可分別有2,3,4個(gè)解.故n的取值范圍為2,3,4.故選B.15.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤是()

A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)

D.大前提和小前提錯(cuò)都導(dǎo)致結(jié)論錯(cuò)答案:A16.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()

A.變量x與y正相關(guān),u與v正相關(guān)

B.變量x與y正相關(guān),u與v負(fù)相關(guān)

C.變量x與y負(fù)相關(guān),u與v正相關(guān)

D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C17.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()

A.a(chǎn)<b<c

B.a(chǎn)<c<B

C.c<b<a

D.b<c<a

答案:C18.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:819.下列說(shuō)法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說(shuō)明選擇的模型比較合適;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說(shuō)明模型的擬和效果越好;

③比較兩個(gè)模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.

其中說(shuō)法正確的個(gè)數(shù)為()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:C20.過(guò)點(diǎn)A(0,2),且與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有()條.A.1B.2C.3D.4答案:∵點(diǎn)A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對(duì)稱軸平行,故選C.21.在極坐標(biāo)中,由三條曲線θ=0,θ=,ρcosθ+ρsinθ=1圍成的圖形的面積是()

A.

B.

C.

D.答案:A22.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).23.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長(zhǎng)為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.24.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問(wèn)題的程序框圖;

(2)以下是解決該問(wèn)題的一個(gè)程序,但有幾處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.25.方程|x|-1=2y-y2表示的曲線為()A.兩個(gè)半圓B.一個(gè)圓C.半個(gè)圓D.兩個(gè)圓答案:兩邊平方整理得:(|x|-1)2=2y-y2,化簡(jiǎn)得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,當(dāng)x≥1時(shí),方程為(x-1)2+(y-1)2=1,表示圓心為(1,1)且半徑為1的圓的右半圓;當(dāng)x≤1時(shí),方程為(x+1)2+(y-1)2=1,表示圓心為(-1,1)且半徑為1的圓的右半圓綜上所述,得方程|x|-1=2y-y2表示的曲線為為兩個(gè)半圓故選:A26.教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過(guò)建立直角坐標(biāo)系,用代數(shù)中的函數(shù)思想來(lái)解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.27.直線(t為參數(shù))的傾斜角是()

A.20°

B.70°

C.45°

D.135°答案:D28.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.29.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設(shè)b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據(jù)公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.30.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個(gè)為0C.a(chǎn)和b至少有一個(gè)不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價(jià)條件是a≠0或b≠0,即兩者中至少有一個(gè)不為0,對(duì)照四個(gè)選項(xiàng),只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個(gè)為0包括了兩個(gè)數(shù)都是0,故不對(duì);D中只是兩個(gè)數(shù)僅有一個(gè)為0,概括不全面,故不對(duì);故選C31.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,

(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種32.已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過(guò)球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個(gè)圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯(cuò)誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過(guò)球心的截面如(1)圖所示;(2)過(guò)三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過(guò)三棱錐的一個(gè)頂點(diǎn)(不過(guò)棱)和球心所得截面如(3)圖所示;(4)棱長(zhǎng)都相等的正三棱錐和球心不可能在同一個(gè)面上,所以(4)是錯(cuò)誤的.故選C.33.已知當(dāng)拋物線型拱橋的頂點(diǎn)距水面2米時(shí),量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點(diǎn)距水面2米時(shí),量得水面寬8米∴點(diǎn)(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4234.在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對(duì)角線AC與BD交于點(diǎn)O,∴AB+AD=AC,又O為AC的中點(diǎn),∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.35.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若從散點(diǎn)圖分析,y與x線性相關(guān),且

y

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論