2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年西安海棠職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知一個(gè)學(xué)生的語(yǔ)文成績(jī)?yōu)?9,數(shù)學(xué)成績(jī)?yōu)?6,外語(yǔ)成績(jī)?yōu)?9.求他的總分和平均成績(jī)的一個(gè)算法為:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:輸出計(jì)算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計(jì)算平均成績(jī).x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.2.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B3.已知A(3,0),B(0,3),O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.4.已知雙曲線(xiàn)的頂點(diǎn)到漸近線(xiàn)的距離為2,焦點(diǎn)到漸近線(xiàn)的距離為6,則該雙曲線(xiàn)的離心率為(

A.

B.

C.3

D.2答案:C5.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(

)。答案:(100,400)6.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實(shí)數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時(shí)是常函數(shù),x≥0時(shí)是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.7.已知函數(shù)f(x)=2x,數(shù)列{an}滿(mǎn)足a1=f(0),且f(an+1)=(n∈N*),

(1)證明數(shù)列{an}是等差數(shù)列,并求a2010的值;

(2)分別求出滿(mǎn)足下列三個(gè)不等式:,

的k的取值范圍,并求出同時(shí)滿(mǎn)足三個(gè)不等式的k的最大值;

(3)若不等式對(duì)一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數(shù)列,∴,∴。(2)由,得;,得;,得,,∴當(dāng)k同時(shí)滿(mǎn)足三個(gè)不等式時(shí),。(3)由,得恒成立,令,則,,∴,∵F(n)是關(guān)于n的單調(diào)增函數(shù),∴,∴。8.參數(shù)方程為t為參數(shù))表示的曲線(xiàn)是()

A.一條直線(xiàn)

B.兩條直線(xiàn)

C.一條射線(xiàn)

D.兩條射線(xiàn)答案:D9.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(

)g。答案:1618或138210.隨機(jī)地向某個(gè)區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個(gè)撒種區(qū)域的面積大約有______m2.答案:設(shè)整個(gè)撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.11.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個(gè)數(shù),b可以為1,2,6三個(gè)數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個(gè)元素.故為8.12.已知點(diǎn)P在曲線(xiàn)C1:x216-y29=1上,點(diǎn)Q在曲線(xiàn)C2:(x-5)2+y2=1上,點(diǎn)R在曲線(xiàn)C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線(xiàn)的知識(shí)可知:C1x216-y29=1的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點(diǎn)正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C13.已知A、B、C三點(diǎn)共線(xiàn),A分的比為λ=-,A,B的縱坐標(biāo)分別為2,5,則點(diǎn)C的縱坐標(biāo)為()

A.-10

B.6

C.8

D.10答案:D14.Rt△ABC的直角邊AB在平面α內(nèi),頂點(diǎn)C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線(xiàn)段或銳角三角形

B.線(xiàn)段與直角三角形

C.線(xiàn)段或鈍角三角形

D.線(xiàn)段、銳角三角形、直角三角形或鈍角三角形答案:B15.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.16.(1)用紅、黃、藍(lán)、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問(wèn)共有多少種不同的擺放方案?

(2)用紅、黃、藍(lán)、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.

①求恰有兩個(gè)區(qū)域用紅色鮮花的概率;

②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學(xué)期望E(S).

答案:(1)根據(jù)分步計(jì)數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個(gè)區(qū)域用紅色鮮花”,如圖二,當(dāng)區(qū)域A、D同色時(shí),共有5×4×3×1×3=180種;當(dāng)區(qū)域A、D不同色時(shí),共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類(lèi)計(jì)算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因?yàn)锳、D為紅色時(shí),共有4×3×3=36種;B、E為紅色時(shí),共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機(jī)變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=117.對(duì)于5年可成材的樹(shù)木,從栽種到5年成材的木材年生長(zhǎng)率為18%,以后木材的年生長(zhǎng)率為10%.樹(shù)木成材后,既可以出售樹(shù)木,重栽新樹(shù)苗;也可以讓其繼續(xù)生長(zhǎng).問(wèn):哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數(shù)據(jù):lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結(jié)果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.18.經(jīng)過(guò)拋物線(xiàn)y2=2x的焦點(diǎn)且平行于直線(xiàn)3x-2y+5=0的直線(xiàn)的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A19.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于20.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12

時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.21.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.22.如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),則f(x)在其相鄰兩個(gè)零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為_(kāi)_____.答案:作出點(diǎn)A的軌跡中相鄰兩個(gè)零點(diǎn)間的圖象,如圖所示.其軌跡為兩段圓弧,一段是以C為圓心,CA為半徑的四分之一圓??;一段是以B為圓心,BA為半徑,圓心角為3π4的圓?。渑cx軸圍成的圖形的面積為12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故為:2+4π.23.若雙曲線(xiàn)的漸近線(xiàn)方程為y=±34x,則雙曲線(xiàn)的離心率為_(kāi)_____.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.24.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.25.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.26.(坐標(biāo)系與參數(shù)方程)

從極點(diǎn)O作直線(xiàn)與另一直線(xiàn)ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.

(1)求點(diǎn)P的軌跡方程;

(2)設(shè)R為直線(xiàn)ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線(xiàn)l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為127.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為_(kāi)_____.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).28.按ABO血型系統(tǒng)學(xué)說(shuō),每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()

A.12種

B.6種

C.10種

D.9種答案:D29.直線(xiàn)kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線(xiàn)都通過(guò)定點(diǎn)

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C30.右圖程序運(yùn)行后輸出的結(jié)果為()

A.3456

B.4567

C.5678

D.6789

答案:A31.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+

(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時(shí),5t2-2t+2的最小值為95所以當(dāng)t=15時(shí),|b-a|的最小值是95=355故為:35532.設(shè)函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.33.設(shè)A(3,4),在x軸上有一點(diǎn)P(x,0),使得|PA|=5,則x等于()

A.0

B.6

C.0或6

D.0或-6答案:C34.點(diǎn)P(2,5)關(guān)于直線(xiàn)x+y=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(

)。答案:(-4,-1)35.復(fù)數(shù),且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C36.求過(guò)點(diǎn)A(2,3)且被兩直線(xiàn)3x+4y-7=0,3x+4y+8=0截得線(xiàn)段為32的直線(xiàn)方程.答案:設(shè)所求直線(xiàn)l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線(xiàn)的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線(xiàn)的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.37.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線(xiàn)表示它們有網(wǎng)線(xiàn)相聯(lián),連線(xiàn)標(biāo)注的數(shù)字表示該段網(wǎng)線(xiàn)單位時(shí)間內(nèi)可以通過(guò)的最大信息量,現(xiàn)從結(jié)點(diǎn)B向結(jié)點(diǎn)A傳遞信息,信息可以分開(kāi)沿不同的路線(xiàn)同時(shí)傳遞,則單位時(shí)間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D38.某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答問(wèn)題者進(jìn)入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問(wèn)題的概率分別為、、、,且各輪問(wèn)題能否正確回答互不影響.

(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問(wèn)題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.39.下面程序框圖輸出的S表示什么?虛線(xiàn)框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線(xiàn)框是一個(gè)順序結(jié)構(gòu).40.雙曲線(xiàn)的中心是原點(diǎn)O,它的虛軸長(zhǎng)為26,右焦點(diǎn)為F(c,0)(c>0),直線(xiàn)l:x=a2c與x軸交于點(diǎn)A,且|OF|=3|OA|.過(guò)點(diǎn)F的直線(xiàn)與雙曲線(xiàn)交于P、Q兩點(diǎn).

(Ⅰ)求雙曲線(xiàn)的方程;

(Ⅱ)若AP?AQ=0,求直線(xiàn)PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線(xiàn)的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線(xiàn)的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線(xiàn)PQ與x軸垂直時(shí),PQ方程為x=3.此時(shí),AP?AQ≠0,應(yīng)舍去.當(dāng)直線(xiàn)PQ與x軸不垂直時(shí),設(shè)直線(xiàn)PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過(guò)點(diǎn)F的直線(xiàn)與雙曲線(xiàn)交于P、Q兩點(diǎn),則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線(xiàn)PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿(mǎn)足(*)∴直線(xiàn)PQ的方程為x-2y-3=0或x+2y-3=041.已知F1、F2為橢圓x225+y216=1的左、右焦點(diǎn),若M為橢圓上一點(diǎn),且△MF1F2的內(nèi)切圓的周長(zhǎng)等于3π,則滿(mǎn)足條件的點(diǎn)M有

()個(gè).A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點(diǎn),故滿(mǎn)足條件的點(diǎn)M有2個(gè),故選

C.42.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A43.小李在一旅游景區(qū)附近租下一個(gè)小店面賣(mài)紀(jì)念品和T恤,由于經(jīng)營(yíng)條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營(yíng),已知進(jìn)貨價(jià)為T(mén)恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤(rùn)是18元,每件紀(jì)念品的利潤(rùn)是20元,問(wèn)怎樣進(jìn)貨才能使他的利潤(rùn)最大,最大利潤(rùn)為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤(rùn)為z元,由題意得x、y滿(mǎn)足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個(gè)頂點(diǎn)坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線(xiàn)l:z=18x+20y經(jīng)過(guò)C(50,252)時(shí)取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時(shí),z取最大值即進(jìn)50件T恤,12件紀(jì)念品時(shí),可獲最大利潤(rùn),最大利潤(rùn)為1140元.44.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D45.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B46.一位運(yùn)動(dòng)員投擲鉛球的成績(jī)是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時(shí),達(dá)到最大高度4m.若鉛球運(yùn)行的路線(xiàn)是拋物線(xiàn),則鉛球出手時(shí)距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D47.集合{1,2,3}的真子集的個(gè)數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選C.48.(1+x2)5的展開(kāi)式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.49.參數(shù)方程表示什么曲線(xiàn)?答案:見(jiàn)解析解析:解:顯然,則即得,即50.已知a、b、c是△ABC的三邊,且關(guān)于x的二次方程x2-2x+lg(c2-b2)-2lga+1=0有等根,判斷△ABC的形狀.答案:解:∵方程有等根,∴Δ=4-4[lg(c2-b2)-2lga+1]=4-4lg=0,∴l(xiāng)g=1,∴=10,∴c2-b2=a2,即a2+b2=c2,∴△ABC為直角三角形.第2卷一.綜合題(共50題)1.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<02.若log

23(x-2)≥0,則x的范圍是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].3.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C4.已知直線(xiàn)l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時(shí)兩條直線(xiàn)平行,當(dāng)k≠3時(shí)有2=-24-k≠3

所以

k=5故為:3或5.5.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號(hào)分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號(hào)同學(xué)同意第j號(hào)同學(xué)當(dāng)選.0,第i號(hào)同學(xué)不同意第j號(hào)同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時(shí)同意第1,2號(hào)同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號(hào)同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來(lái)確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號(hào)同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時(shí)同意1,2號(hào)同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時(shí)同意1,2號(hào)同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.6.下列數(shù)字特征一定是數(shù)據(jù)組中的數(shù)是()

A.眾數(shù)

B.中位數(shù)

C.標(biāo)準(zhǔn)差

D.平均數(shù)答案:A7.設(shè)直線(xiàn)的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線(xiàn)的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.8.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.9.小王通過(guò)英語(yǔ)聽(tīng)力測(cè)試的概率是,他連續(xù)測(cè)試3次,那么其中恰有1次獲得通過(guò)的概率是()

A.

B.

C.

D.答案:A10.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為_(kāi)_____.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.11.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿(mǎn)足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.12.拋物線(xiàn)x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A13.下列特殊命題中假命題的個(gè)數(shù)是()

①有的實(shí)數(shù)是無(wú)限不循環(huán)小數(shù);

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B14.兩平行直線(xiàn)5x+12y+3=0與10x+24y+5=0間的距離是

______.答案:∵兩平行直線(xiàn)

ax+by+m=0

ax+by+n=0間的距離是|m-n|a2+b2,5x+12y+3=0即10x+24y+6=0,∴兩平行直線(xiàn)5x+12y+3=0與10x+24y+5=0間的距離是|5-6|102+242=1576=126.故為126.15.已知在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為pcos(θ+π6)=0.

(1)寫(xiě)出直線(xiàn)l的直角坐標(biāo)方程和圓C的普通方程;

(2)求圓C截直線(xiàn)l所得的弦長(zhǎng).答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直線(xiàn)l的直角坐標(biāo)方程為3x-y=0.(5分)(2)圓心(3,1)到直線(xiàn)l的距離為d=|3×3-1|(3)2+12=1.(7分)設(shè)圓C直線(xiàn)l所得弦長(zhǎng)為m,則m2=r2-d2=9-1=22,∴m=42.(10分)16.下列說(shuō)法中正確的是()A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價(jià)C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個(gè)命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯(cuò)誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價(jià),故B錯(cuò)誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯(cuò)誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D17.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:

(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;

(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個(gè)甲這樣的人才能滿(mǎn)足題意.解析:(1)設(shè)A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨(dú)立,從而A與、與B、與均相互獨(dú)立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設(shè)至少需要n個(gè)甲這樣的人,而n個(gè)甲這樣的人譯不出的概率為,∴n個(gè)甲這樣的人能譯出的概率為,由∴至少需4個(gè)甲這樣的人才能滿(mǎn)足題意.18.在某次數(shù)學(xué)考試中,考生的成績(jī)X~N(90,100),則考試成績(jī)X位于區(qū)間(80,90)上的概率為_(kāi)_____.答案:∵考生的成績(jī)X~N(90,100),∴正弦曲線(xiàn)關(guān)于x=90對(duì)稱(chēng),根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績(jī)X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341319.用數(shù)學(xué)歸納法證明:

對(duì)于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時(shí),左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時(shí),命題成立;

…(2分)(2)設(shè)n=k時(shí),命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當(dāng)n=k+1時(shí),左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當(dāng)n=k+1時(shí),命題成立.綜合(1)(2)得:對(duì)于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)20.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.21.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()

A.a(chǎn)x+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.a(chǎn)x+by+cz答案:D22.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()

A.2

B.

C.4

D.

答案:C23.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()

A.1

B.2

C.3

D.2006答案:B24.現(xiàn)有編號(hào)分別為1,2,3,4,5,6,7,8,9的九道不同的數(shù)學(xué)題,某同學(xué)從這九道題中一次隨機(jī)抽取兩道題,每題被抽到的概率是相等的,用符號(hào)(x,y)表示事件“抽到兩題的編號(hào)分別為x,y,且x<y”.

(1)共有多少個(gè)基本事件?并列舉出來(lái).

(2)求該同學(xué)所抽取的兩道題的編號(hào)之和小于17但不小于11的概率.答案:(1)共有36種基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)設(shè)事件A=“兩道題的編號(hào)之和小于17但不小于11”則事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15種.∴P(A)=1536=512.25.

008年北京成功舉辦了第29屆奧運(yùn)會(huì),中國(guó)取得了51金、21銀、28銅的驕人成績(jī).下表為北京奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類(lèi)比賽的門(mén)票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類(lèi)比賽的門(mén)票:

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類(lèi)門(mén)票,其中足球門(mén)票數(shù)與乒乓球門(mén)票數(shù)相同,且足球門(mén)票的費(fèi)用不超過(guò)男籃門(mén)票的費(fèi)用,則可以預(yù)訂男籃門(mén)票數(shù)為

A.2

B.3

C.4

D.5

答案:D26.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C27.平面上一動(dòng)點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線(xiàn),若a>c是否為雙曲線(xiàn)?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線(xiàn)的一支2a=2c時(shí),軌跡為一條射線(xiàn)2a>2c時(shí),無(wú)軌跡.28.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問(wèn):(1)這種猜想,你認(rèn)為正確嗎?

(2)不管猜想是否正確,這個(gè)結(jié)論是通過(guò)什么推理方法得到的?

(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類(lèi)比推理的方法;(3)由類(lèi)比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立29.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B30.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫(xiě)出其中次品數(shù)ξ的概率分布.答案:依題意,隨機(jī)變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:31.已知二階矩陣A=2ab0屬于特征值-1的一個(gè)特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.32.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時(shí),b∈Q,P+Q={1,2,6}當(dāng)a=2時(shí),b∈Q,P+Q={3,4,8}當(dāng)a=5時(shí),b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C33.不等式log2(x+1)<1的解集為()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C34.制作一個(gè)面積為1

m2,形狀為直角三角形的鐵架框,有下列四種長(zhǎng)度的鐵管供選擇,較經(jīng)濟(jì)的(既夠用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:設(shè)一條直角邊為x,則另一條直角邊是2x,斜邊長(zhǎng)為x2+4x2故周長(zhǎng)

l=x+2x+x2+4x2≥22+2≈4.82當(dāng)且僅當(dāng)x=2時(shí)等號(hào)成立,故較經(jīng)濟(jì)的(既夠用又耗材量少)是5m故應(yīng)選B.35.如圖,AB,AC分別是⊙O的切線(xiàn)和割線(xiàn),且∠C=45°,∠BDA=60°,CD=6,則切線(xiàn)AB的長(zhǎng)是______.答案:過(guò)點(diǎn)A作AM⊥BD與點(diǎn)M.∵AB為圓O的切線(xiàn)∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線(xiàn)定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.36.直線(xiàn)x3+y4=t被兩坐標(biāo)軸截得的線(xiàn)段長(zhǎng)度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標(biāo)軸截得的線(xiàn)段長(zhǎng)度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1537.如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過(guò)F作l的垂線(xiàn)交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線(xiàn)為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線(xiàn)的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線(xiàn)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵PQ是拋物線(xiàn)過(guò)焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線(xiàn),∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類(lèi)比(Ⅱ)所寫(xiě)出的命題為:“過(guò)橢圓一焦點(diǎn)F的直線(xiàn)與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線(xiàn)l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線(xiàn),∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線(xiàn)l相離.選擇雙曲線(xiàn)類(lèi)比(Ⅱ)所寫(xiě)出的命題為:“過(guò)雙曲線(xiàn)一焦點(diǎn)F的直線(xiàn)與雙曲線(xiàn)交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線(xiàn)相應(yīng)的準(zhǔn)線(xiàn)l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線(xiàn),∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線(xiàn)l相交.38.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線(xiàn)相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.39.下面程序框圖輸出的S表示什么?虛線(xiàn)框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線(xiàn)框是一個(gè)順序結(jié)構(gòu).40.設(shè)復(fù)數(shù)z滿(mǎn)足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為441.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項(xiàng)工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個(gè)工程依次插在由甲、乙、丙丁四個(gè)工程之間即可,第一個(gè)插入時(shí)有4種,第二個(gè)插入時(shí)共5個(gè)空,有5種方法;可得有5×4=20種不同排法.故為:2042.以下程序輸入2,3,4運(yùn)行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C43.(坐標(biāo)系與參數(shù)方程選做題)過(guò)點(diǎn)(2,π3)且平行于極軸的直線(xiàn)的極坐標(biāo)方程為_(kāi)_____.答案:法一:先將極坐標(biāo)化成直角坐標(biāo)表示,(2,π3)化為(1,3),過(guò)(1,3)且平行于x軸的直線(xiàn)為y=3,再化成極坐標(biāo)表示,即ρsinθ=3.法二:在極坐標(biāo)系中,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.設(shè)A(ρ,θ)是直線(xiàn)上的任一點(diǎn),A到極軸的距離AH=2sinπ3=3,直接構(gòu)造直角三角形由其邊角關(guān)系得方程ρsinθ=3.故為:ρsinθ=344.(選做題)那霉素發(fā)酵液生物測(cè)定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(

).答案:7945.拋物線(xiàn)的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓=1的一個(gè)焦點(diǎn)重合,則拋物線(xiàn)方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A46.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機(jī)抽樣

D.系統(tǒng)抽樣答案:D47.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0

B=φA(2)當(dāng)a=-1時(shí)△=0

B={0}A(3)當(dāng)a>-1時(shí)△>0

要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=148.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D49.如圖所示,設(shè)k1,k2,k3分別是直線(xiàn)l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C50.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類(lèi)比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長(zhǎng)的一半,由類(lèi)比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長(zhǎng)方體,其外接球的半徑R為長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)的一半.故為a2+b2+c22故為:a2+b2+c22第3卷一.綜合題(共50題)1.與雙曲線(xiàn)x2-y24=1有共同的漸近線(xiàn),且過(guò)點(diǎn)(2,2)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)_____.答案:設(shè)雙曲線(xiàn)方程為x2-y24=λ∵過(guò)點(diǎn)(2,2),∴λ=3∴所求雙曲線(xiàn)方程為x23-y212=1故為x23-y212=12.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B3.若兩條平行線(xiàn)L1:x-y+1=0,與L2:3x+ay-c=0

(c>0)之間的距離為,則等于()

A.-2

B.-6

C..2

D.0答案:A4.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線(xiàn)BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大?。?/p>

(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長(zhǎng)DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)5.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,E、F分別為棱AB、BC的中點(diǎn).

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點(diǎn)D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.6.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長(zhǎng)線(xiàn)上,且滿(mǎn)足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為_(kāi)_____.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).7.已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)與x軸的交點(diǎn)為M,N為拋物線(xiàn)上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線(xiàn)的距離等于d,由拋物線(xiàn)的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.8.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:1404299.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共線(xiàn)向量

D.共起點(diǎn)的向量答案:B10.知x、y、z均為實(shí)數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分11.等于()

A.

B.

C.

D.答案:B12.直線(xiàn)(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A13.電子跳蚤游戲盤(pán)是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開(kāi)始時(shí)在BC邊的點(diǎn)P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2010與C間的距離為_(kāi)_____答案:∵由題意可以發(fā)現(xiàn)每邊各有兩點(diǎn),其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現(xiàn)規(guī)律2010為六的倍數(shù)所以與P0重合,∴與C點(diǎn)之間的距離為6故為:614.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對(duì)于定義域中的一切實(shí)數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.15.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.16.若復(fù)數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.17.△ABC所在平面內(nèi)點(diǎn)O、P,滿(mǎn)足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線(xiàn)∴點(diǎn)P的軌跡一定經(jīng)過(guò)△ABC的重心故選A.18.(選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線(xiàn)θ=與曲線(xiàn)(t為參數(shù))相較于A,B來(lái)兩點(diǎn),則線(xiàn)段AB的中點(diǎn)的直角坐標(biāo)為(

)。答案:(2.5,2.5)19.定點(diǎn)F1,F(xiàn)2,且|F1F2|=8,動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|=8,則點(diǎn)P的軌跡是()A.橢圓B.圓C.直線(xiàn)D.線(xiàn)段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點(diǎn)P不在直線(xiàn)F1F2上時(shí),根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點(diǎn)P在直線(xiàn)F1F2上時(shí),若點(diǎn)P在F1、F2兩點(diǎn)之外時(shí),可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點(diǎn)P在F1、F2兩點(diǎn)之間(或與F1、F2重合)時(shí),可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點(diǎn)P在直線(xiàn)F1F2上且在F1、F2兩點(diǎn)之間或與F1、F2重合,故點(diǎn)P的軌跡是線(xiàn)段F1F2.故選:D20.(選做題)那霉素發(fā)酵液生物測(cè)定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(

).答案:7921.若直線(xiàn)的參數(shù)方程為,則直線(xiàn)的斜率為(

)A.B.C.D.答案:D22.拋物線(xiàn)y=4x2的焦點(diǎn)坐標(biāo)為()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B23.管理人員從一池塘中撈出30條魚(yú)做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚(yú)完全混合于魚(yú)群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚(yú)有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚(yú).答案:設(shè)該池塘中有x條魚(yú),由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.24.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2325.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.26.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.27.在參數(shù)方程所表示的曲線(xiàn)上有B、C兩點(diǎn),它們對(duì)應(yīng)的參數(shù)值分別為t1、t2,則線(xiàn)段BC的中點(diǎn)M對(duì)應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B28.(幾何證明選講選做題)如圖,梯形,,是對(duì)角線(xiàn)和的交點(diǎn),,則

答案:1:6解析:,

,,∵,,而∴。29.正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M是棱AB的中點(diǎn),點(diǎn)P是平面ABCD上的一動(dòng)點(diǎn),且點(diǎn)P到直線(xiàn)A1D1的距離兩倍的平方比到點(diǎn)M的距離的平方大4,則點(diǎn)P的軌跡為()A.圓B.橢圓C.雙曲線(xiàn)D.拋物線(xiàn)答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標(biāo)系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點(diǎn)P到直線(xiàn)A1D1的距離為x2+1由題意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74選C30.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).

(1)求以線(xiàn)段AB、AC為鄰邊的平行四邊形兩條對(duì)角線(xiàn)的長(zhǎng);

(2)設(shè)實(shí)數(shù)t滿(mǎn)足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為42、210.(方法二)設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線(xiàn)的交點(diǎn)為E,則:E為B、C的中點(diǎn),E(0,1)又E(0,1)為A、D的中點(diǎn),所以D(1,4)故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11531.如圖,在△OAB中,P為線(xiàn)段AB上的一點(diǎn),,且,則()

A.

B.

C.

D.

答案:A32.在語(yǔ)句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B33.圓ρ=2sinθ的圓心到直線(xiàn)2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點(diǎn)到直線(xiàn)的距離公式,得+d=|1+1|5=255.故為255.34.若=(2,-3,1)是平面α的一個(gè)法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D35.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)36.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A37.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線(xiàn)HF交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.

(1)求證:圓心O在直線(xiàn)AD上.

(2)求證:點(diǎn)C是線(xiàn)段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線(xiàn)∴圓心O在直線(xiàn)A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論