版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年江西管理職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.如圖,在半徑為7的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.2.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B3.從某校隨機抽取了100名學生,將他們的體重(單位:kg)數據繪制成頻率分布直方圖(如圖),由圖中數據可知m=______,所抽取的學生中體重在45~50kg的人數是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數是0.1×5×100=50人,故為:0.1;504.參數方程,(θ為參數)表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C5.若log
23(x-2)≥0,則x的范圍是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].6.設A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()
A.0
B.6
C.0或6
D.0或-6答案:C7.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實數a的值為______.答案:根據題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.8.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C9.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,左視圖是一個底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復原是一個底面邊長為8,6的距離,高為4,且頂點在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.10.橢圓的長軸長為10,短軸長為8,則橢圓上的點到橢圓中心的距離的取值范圍是______.答案:橢圓上的點到圓心的最小距離為短半軸的長度,最大距離為長半軸的長度因為橢圓的長軸長為10,短軸長為8,所以橢圓上的點到圓心的最小距離為4,最大距離為5所以橢圓上的點到橢圓中心距離的取值范圍是[4,5]故為:[4,5]11.雙曲線x2n-y2=1(n>1)的兩個焦點為F1,F2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.12.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關系是:k=tanθ∴傾斜角為30°時,對應的斜率k=tan30°=33故選:C.13.H:x-y+z=2為坐標空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標空間中一平面∴平面的一個法向量是n=(1,-1,1)設直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)14.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C15.方程x2+ky2=2表示焦點在y軸的橢圓,那么實數k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<116.如果輸入2,那么執(zhí)行圖中算法的結果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.17.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.
A.80
B.160
C.320
D.160答案:B18.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.19.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:
①當點A在圓C上時,直線l與圓C相切;
②當點A在圓C內時,直線l與圓C相離;
③當點A在圓C外時,直線l與圓C相交.
其中正確的命題個數是()
A.0
B.1
C.2
D.3答案:D20.直角△PIB中,∠PBO=90°,以O為圓心、OB為半徑作圓弧交OP于A點.若弧AB等分△POB的面積,且∠AOB=α弧度,則(
)
A.tanα=α
B.tan=2α
C.sinα=2cosα
D.2sin=cosα答案:B21.圓錐的側面展開圖是一個半徑長為4的半圓,則此圓錐的底面半徑為
______.答案:設圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.22.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設的內容是______.答案:根據用反證法證明數學命題的步驟,應先假設要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.23.已知數列{an}前n項的和為Sn,且滿足an=n2
(n∈N*).
(Ⅰ)求s1、s2、s3的值;
(Ⅱ)用數學歸納法證明sn=n(n+1)(2n+1)6
(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設n=k(k∈N*)時結論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(1)(2)可知對任意的正整數n∈N*都成立.…(14分)24.已知矩陣A=b-2-7a的逆矩陣是B=a273,則a+b=______.答案:根據矩陣A=b-2-7a的逆矩陣是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故為:8.25.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D26.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點,設,,=,則等于()
A.
B.
C.
D.答案:A27.不等式log2(x+1)<1的解集為()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C28.四名志愿者和兩名運動員排成一排照相,要求兩名運動員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據題意,要求兩名運動員站在一起,所以使用捆綁法,兩名運動員站在一起,有A22種情況,將其當做一個元素,與其他四名志愿者全排列,有A55種情況,結合分步計數原理,其不同的排列方法為A55A22種,故選B.29.現有10個保送上大學的名額,分配給7所學校,每校至少有1個名額,名額分配的方法共有______種(用數字作答).答案:根據題意,將10個名額,分配給7所學校,每校至少有1個名額,可以轉化為10個元素之間有9個間隔,要求分成7份,每份不空;相當于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.30.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.31.有一矩形紙片ABCD,按圖所示方法進行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.32.四面體ABCD中,設M是CD的中點,則化簡的結果是()
A.
B.
C.
D.答案:A33.2007年10月24日18時05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,則衛(wèi)星軌道的離心率為______(結果用R的式子表示)答案:由題意衛(wèi)星進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.34.分析法是從要證明的結論出發(fā),逐步尋求使結論成立的()
A.充分條件
B.必要條件
C.充要條件
D.等價條件答案:A35.對于5年可成材的樹木,從栽種到5年成材的木材年生長率為18%,以后木材的年生長率為10%.樹木成材后,既可以出售樹木,重栽新樹苗;也可以讓其繼續(xù)生長.問:哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數據:lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.36.在極坐標系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標方程是______.答案:(22,π4)的直角坐標為:(2,2),圓ρ=4sinθ的直角坐標方程為:x2+y2-4y=0;顯然,圓心坐標(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標方程是:ρcosθ=2故為:ρcosθ=237.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C38.為了了解某社區(qū)居民是否準備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調查,若60~70歲這個年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D39.曲線x=sinθy=sin2θ(θ為參數)與直線y=a有兩個公共點,則實數a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.40.如圖是《集合》一章的知識結構圖,如果要加入“交集”,則應該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運算”的下位
答案:D41.下面為一個求20個數的平均數的程序,在橫線上應填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A42.設a1,a2,…,a2n+1均為整數,性質P為:對a1,a2,…,a2n+1中任意2n個數,存在一種分法可將其分為兩組,每組n個數,使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質P.答案:證明:①當a1,a2,…,a2n+1全部相等時,從中任意2n個數,將其分為兩組,每組n個數,兩組所有元素的和相等,故性質P成立.②下面證明:當a1,a2,…,a2n+1具有性質P時,a1,a2,…,a2n+1全部相等.反證法:假設a1,a2,…,a2n+1不全部相等,則其中至少有一個整數和其它的整數不同,不妨設此數為a1,若a1在取出的2n個數中,將其分為兩組,每組n個數,則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質P矛盾,故假設不成立,所以,當a1,a2,…,a2n+1具有性質P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質P.43.已知A(4,1,9),B(10,-1,6),則A,B兩點間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:744.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()
A.10
B.-10
C.14
D.-14答案:D45.數據:1,1,3,3的眾數和中位數分別是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A46.下列對一組數據的分析,不正確的說法是()
A.數據極差越小,樣本數據分布越集中、穩(wěn)定
B.數據平均數越小,樣本數據分布越集中、穩(wěn)定
C.數據標準差越小,樣本數據分布越集中、穩(wěn)定
D.數據方差越小,樣本數據分布越集中、穩(wěn)定答案:B47.命題“若a,b都是奇數,則a+b是偶數”的逆否命題是()A.若a+b不是偶數,則a,b都不是奇數B.若a+b不是偶數,則a,b不都是奇數C.若a+b是偶數,則a,b都是奇數D.若a+b是偶數,則a,b不都是奇數答案:“a,b都是奇數”的否定是“a,b不都是奇數”,“a+b是偶數”的否定是“a+b不是偶數”,故命題“若a,b都是奇數,則a+b是偶數”的逆否命題是“若a+b不是偶數,則a,b不都是奇數”.故選B.48.設F1、F2分別是橢圓x225+y216=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.49.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.
A.2
B.3
C.4
D.5答案:D50.(每題6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當8-x<0顯然成立。當8-x》0時,則兩邊平方可得。所以第2卷一.綜合題(共50題)1.設與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C2.已知函數f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).3.已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圓心為(-2,1),半徑為3,設圓上一點為(x,y)圓心到原點的距離是(-2)2+1
2=5圓上的點到原點的最大距離是5+3故x2+y2的最大值是為(5+3)2=14+65故選D4.已知點O為△ABC外接圓的圓心,且有,則△ABC的內角A等于()
A.30°
B.60°
C.90°
D.120°答案:A5.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是
______.答案:連接OD,AB⊥CD于E,根據垂徑定理得到DE=4,在直角△ODE中,根據勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.6.設橢圓C1的離心率為513,焦點在x軸上且長軸長為26.若曲線C2上的點到橢圓C1的兩個焦點的距離的差的絕對值等于8,則曲線C2的標準方程為
______答案:根據題意可知橢圓方程中的a=13,∵ca=513∴c=5根據雙曲線的定義可知曲線C2為雙曲線,其中半焦距為5,實軸長為8∴虛軸長為225-16=6∴雙曲線方程為x216-y29=1故為:x216-y29=17.已知F1,F2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=18.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經驗,甲勝乙的概率為23.
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設甲比賽的次數為X,求X的數學期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3
(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數的數學期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.9.參數方程x=3cosθy=4sinθ,(θ為參數)化為普通方程是______.答案:由參數方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化簡得x29+y216=1,即為橢圓的普通方程故為:x29+y216=110.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結束循環(huán),輸出結果S=46.故為:46.11.用數學歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設當n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當n=k+1時等式也成立.(10分)根據(1)和(2),可知等式對任何n∈N*都成立.(12分)12.在空間直角坐標系中,已知點P(a,0,0),Q(4,1,2),且|PQ|=,則a=()
A.1
B.-1
C.-1或9
D.1或9答案:C13.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B14.某簡單幾何體的三視圖如圖所示,其正視圖.側視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個三棱錐,設出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.15.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ16.如圖,在直角坐標系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數),平面上的點P滿足PA+PB=6m.
(1)試求點P的軌跡C1的方程;
(2)若點(x,y)在曲線C1上,求證:點(x3,y22)一定在某圓C2上;
(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.答案:(1)由題意可得點P的軌跡C1是以A,B為焦點的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(x,y)在曲線C1上,則x29m2+y28m2=1.設x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設M(x1,y1),則x12+y12=m2.…①因為點N恰好是線段CM的中點,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)17.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.18.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|
)在∠AOB平分線線上,∴t(a|a|+b|b|
)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.19.方程cos2x=x的實根的個數為
______個.答案:cos2x=x的實根即函數y=cos2x與y=x的圖象交點的橫坐標,故可以將求根個數的問題轉化為求兩個函數圖象的交點個數.如圖在同一坐標系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應該填
1.20.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:921.若圓錐的側面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.22.下圖是由哪個平面圖形旋轉得到的(
)答案:A23.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數λ等于()
A.
B.
C.
D.答案:D24.點(1,1)在圓(x-a)2+(y+a)2=4的內部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a=±1答案:A25.盒中有10只螺絲釘,其中有3只是壞的,現從盒中隨機地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機地抽取4只的總數為:C104=210,∵其中有3只是壞的,∴所可能出現的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B26.已知空間兩點A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A27.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個元素,那么實數m的取值范圍是
______.答案:如果P∩Q有且只有一個元素,即函數y=m與y=ax+1(a>0,且a≠1)圖象只有一個公共點.∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)28.用反證法證明“如果a<b,那么“”,假設的內容應是()
A.
B.
C.且
D.或
答案:D29.已知三角形ABC的一個頂點A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點B的坐標為(3,1).設點A關于角B的平分線所在的直線方程為x+y-4=0的對稱點為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點M(1,2),由兩點式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點C的坐標為(2,52),由此可得得AC的方程為x=2.30.設P、Q為兩個非空實數集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數,b可以為1,2,6三個數,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.31.下面程序框圖輸出的S表示什么?虛線框表示什么結構?答案:由框圖知,當r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結構.32.由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a233.若直線ax+by+1=0與圓x2+y2=1相離,則點P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內
D.以上都有可能答案:C34.設有三個命題:“①0<12<1.②函數f(x)=log
12x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當0<a<1時,函數f(x)=logax是減函數,小前提:0<12<1,結論:函數f(x)=log
12x是減函數.其“小前提”是①.故為:①.35.用0、1、2、3、4、5這6個數字,可以組成無重復數字的五位偶數的個數為______(用數字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31236.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(
)
A.-2
B.-1
C.0
D.1答案:B37.直線(3+4)x+(4-6)y-14-2=0(∈R)恒過定點A,則點A的坐標為(
)。答案:(2,-1)38.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.39.已知直線l:(t為參數)的傾斜角是()
A.
B.
C.
D.答案:D40.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=141.如圖,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量外,與向量共線的向量共有()
A.2個
B.3個
C.6個
D.9個
答案:D42.把函數y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C43.根據給出的空間幾何體的三視圖,用斜二側畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.44.構成多面體的面最少是(
)
A.三個
B.四個
C.五個
D.六個答案:B45.設a,b,c都是正數,求證:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:證明略解析:證明
(1)∵a,b,c都是正數,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當且僅當a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當且僅當a=b=c時,等號成立.46.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.47.某學校高一年級男生人數占該年級學生人數的40%,在一次考試中,男,女平均分數分別為75、80,則這次考試該年級學生平均分數為______.答案:設該班男生有x人,女生有y人,這次考試該年級學生平均分數為a.根據題意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,則這次考試該年級學生平均分數為78.故為:78.48.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個能被3整除”時,假設應為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a不能被3整除答案:B49.設橢圓(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為,則此橢圓的方程為(
)
A.
B.
C.
D.答案:B50.設函數f(x)是定義在[a,b]上的奇函數,則f(a+b)=______.答案:因為函數f(x)是定義在[a,b]上的奇函數,所以定義域關于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.第3卷一.綜合題(共50題)1.設a,b,c是三個不共面的向量,現在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構成空間的一個基底,則可以選擇的向量為______.答案:構成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)2.設a>2,給定數列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結論成立.②假設n=k時,結論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數n成立3.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學生高二上學期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數學成績,i=3表示英語成績,i=4表示語數外三門總分成績j=k,k∈N*表示第50k名分數.若經過一定量的努力,各科能前進的名次是一樣的.現小明的各科排名均在250左右,他想盡量提高三門總分分數,那么他應把努力方向主要放在哪一門學科上()
A.語文
B.數學
C.外語
D.都一樣答案:B4.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時執(zhí)行的內容
D.不滿足條件時執(zhí)行的內容
答案:C5.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為3723046.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()
A.4
B.
C.
D.答案:D7.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為()
A.內切
B.相交
C.外切
D.相離答案:B8.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數y=x12在(0,+∞)是增函數,∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.9.在下列各圖中,每個圖的兩個變量具有線性相關關系的圖是()
A.(1)(2)
B.(1)(3)
C.(2)(4)
D.(2)(3)答案:D10.設點P(,1)(t>0),則||(O為坐標原點)的最小值是()
A.3
B.5
C.
D.答案:D11.甲、乙兩位運動員在5場比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績穩(wěn)定B..x甲>.x乙;乙比甲成績穩(wěn)定C..x甲<.x乙;甲比乙成績穩(wěn)定D..x甲<.x乙;乙比甲成績穩(wěn)定答案:5場比賽甲的得分為16、17、28、30、34,5場比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績穩(wěn)定故選D.12.已知f(x)=,則不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}13.直線kx-y+1=3k,當k變動時,所有直線都通過定點
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C14.已知復數z的模為1,且復數z的實部為13,則復數z的虛部為______.答案:設復數的虛部是b,∵復數z的模為1,且復數z的實部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22315.已知x=-3-2i(i為虛數單位)是一元二次方程x2+ax+b=0(a,b均為實數)的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數單位)是一元二次方程x2+ax+b=0(a,b均為實數)的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據復數相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.16.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.17.已知P:2+2=5,Q:3>2,則下列判斷錯誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯誤.故選C.18.天氣預報說,在今后的三天中每一天下雨的概率均為40%,用隨機模擬的方法進行試驗,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計算器中的隨機函數產生0~9之間隨機整數的20組如下:
907966191925271932812458569683
431257393027556488730113537989
通過以上隨機模擬的數據可知三天中恰有兩天下雨的概率近似為(
)。答案:0.2519.設x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當且僅當2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)20.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.21.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形22.某海域有A、B兩個島嶼,B島在A島正東40海里處.經多年觀察研究發(fā)現,某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)23.試指出函數y=3x的圖象經過怎樣的變換,可以得到函數y=(13)x+1+2的圖象.答案:把函數y=3x的圖象經過3次變換,可得函數y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.24.某班有40名學生,其中有15人是共青團員.現將全班分成4個小組,第一組有學生10人,共青團員4人,從該班任選一個學生代表.在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為415,故選A.25.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為26.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.27.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.28.設a=log132,b=log1213,c=(12)0.3,則()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.29.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D30.下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內,說明選擇的模型比較合適;
②用相關指數可以刻畫回歸的效果,值越大說明模型的擬和效果越好;
③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.
其中說法正確的個數為()
A.0個
B.1個
C.2個
D.3個答案:C31.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題則它的否命題為真命題即{x|x<2或x>5}且{x|1≤x≤4}是真命題所以的取值范圍是[1,2),故為[1,2).32.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A33.設a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B34.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當,比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;
(2)比賽打滿七局的概率.(3)記比賽結束時的比賽局數為ξ,求ξ的分布列及數學期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結束時,比賽的局數為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)35.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若從散點圖分析,y與x線性相關,且
y=0.95x+
a,則
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數據的樣本中心點是(2,4.5)∵y與x線性相關,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.36.已知隨機變量ξ服從正態(tài)分布N(2,a2),且P(ξ<4)=0.8,則P(0<ξ<2)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:C37.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設正方體邊長是acm,根據題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.38.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C39.對變量x,y
有觀測數據(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數據(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公司股權轉讓退股協議3篇
- 二零二五年度時尚博主與模特合作拍攝合同3篇
- 2025年度大型橋梁加固工程合同終止與監(jiān)測服務續(xù)約協議3篇
- 二零二五年度鄉(xiāng)村旅游用地流轉承包合同書3篇
- 2025年度消防安全設施運行維護管理合同3篇
- 2025年度智能物流倉儲合作全新簽約協議模板3篇
- 2025年度國有企業(yè)股權轉讓協議書3篇
- 二零二五年度現代農業(yè)土地承包權流轉及項目合作協議3篇
- 二零二五年度職業(yè)體育團隊兼職教練員聘用協議3篇
- 二零二五年度養(yǎng)殖場市場營銷用工合同3篇
- 三相電能表測量誤差不確定分析報
- 色彩基礎知識ppt
- 加油站冬季安全教育
- 第二章航空燃氣輪機的工作原理
- 推板式造波機的機械結構設計
- SAPHR快速指南
- 廣東海洋大學大數據庫課程設計
- (完整版)食堂管理制度及流程
- 某醫(yī)院后備人才梯隊建設方案
- 二年級上冊英語教案Unit6 Lesson22︱北京課改版
- 桂枝加龍骨牡蠣湯_金匱要略卷上_方劑加減變化匯總
評論
0/150
提交評論