2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年天津輕工職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(

A.-2

B.-1

C.0

D.1答案:B2.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()

A.4

B.15

C.7

D.3答案:D3.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形4.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A5.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

|n|=231×22+1+(23)2=27.故為27.6.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因?yàn)閒(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.7.已知a=20.5,,,則a,b,c的大小關(guān)系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B8.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個(gè)為0C.a(chǎn)和b至少有一個(gè)不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價(jià)條件是a≠0或b≠0,即兩者中至少有一個(gè)不為0,對(duì)照四個(gè)選項(xiàng),只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個(gè)為0包括了兩個(gè)數(shù)都是0,故不對(duì);D中只是兩個(gè)數(shù)僅有一個(gè)為0,概括不全面,故不對(duì);故選C9.下列各圖象中,哪一個(gè)不可能是函數(shù)

y=f(x)的圖象()A.

B.

C.

D.

答案:函數(shù)表示每個(gè)輸入值對(duì)應(yīng)唯一輸出值的一種對(duì)應(yīng)關(guān)系.選項(xiàng)D,對(duì)于x=1時(shí)有兩個(gè)輸出值與之對(duì)應(yīng),故不是函數(shù)圖象故選D.10.已知偶函數(shù)f(x)的圖象與x軸有五個(gè)公共點(diǎn),那么方程f(x)=0的所有實(shí)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對(duì)稱∴其圖象與x軸有五個(gè)交點(diǎn)也關(guān)于y軸對(duì)稱其中一個(gè)為0.另四個(gè)關(guān)于y軸對(duì)稱.∴方程f(x)=0的所有實(shí)根之和為0故為:0.11.已知實(shí)數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線的距離公式得點(diǎn)P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.12.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點(diǎn),求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時(shí),1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時(shí),k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時(shí),第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個(gè)平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時(shí),命題也成立.由(1)(2)知,對(duì)一切n∈N*,命題都成立.13.下列各個(gè)對(duì)應(yīng)中,從A到B構(gòu)成映射的是()A.

B.

C.

D.

答案:按照映射的定義,A中的任何一個(gè)元素在集合B中都有唯一確定的元素與之對(duì)應(yīng).而在選項(xiàng)A和選項(xiàng)B中,前一個(gè)集合中的元素2在后一個(gè)集合中沒有元素與之對(duì)應(yīng),故不符合映射的定義.選項(xiàng)C中,前一個(gè)集合中的元素1在后一集合中有2個(gè)元素和它對(duì)應(yīng),也不符合映射的定義,只有選項(xiàng)D滿足映射的定義,故選D.14.已知有如下兩段程序:

問:程序1運(yùn)行的結(jié)果為______.程序2運(yùn)行的結(jié)果為______.

答案:程序1是計(jì)數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.15.{,,}是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,}②{,,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C16.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點(diǎn)P(x,y)在直線y=x+1上,則其經(jīng)變換后的點(diǎn)Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點(diǎn)Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標(biāo)軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點(diǎn)P(x,y),其經(jīng)變換后得到的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時(shí),方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當(dāng)b=0時(shí),由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點(diǎn)P(-bk,0),其經(jīng)變換后的點(diǎn)Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點(diǎn)P(0,k),其經(jīng)變換后得到的點(diǎn)Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)17.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.18.斜二測畫法的規(guī)則是:

(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖

時(shí),它們分別對(duì)應(yīng)x′和y′軸,兩軸交于點(diǎn)o′,使∠x′o′y′=______,它們確定的平面表示水平平面;

(2)

已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成

______;

(3)已知圖形中平行于x軸的線段的長度,在直觀圖中

______;平行于y軸的線段,在直觀圖中

______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半19.過點(diǎn)P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個(gè)方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點(diǎn)斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.20.頂點(diǎn)在原點(diǎn),焦點(diǎn)是(0,5)的拋物線方程是()

A.x2=20y

B.y2=20x

C.y2=x

D.x2=y答案:A21.已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D22.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()

A.+=

B.與方向相同

C.⊥

D.∥答案:D23.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因?yàn)閦=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,3),所以位于第一象限.故選A.24.直線(a+1)x-(2a+5)y-6=0必過一定點(diǎn),定點(diǎn)的坐標(biāo)為(

)。答案:(-4,-2)25.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應(yīng)改為輸出n;26.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(

A.

B.

C.

D.答案:C27.不等式的解集是

)A.B.C.D.答案:B解析:當(dāng)時(shí),不等式成立;當(dāng)時(shí),不等式可化為,解得綜上,原不等式解集為故選B28.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.29.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13530.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()

A.

B.

C.

D.

答案:A31.安排6名演員的演出順序時(shí),要求演員甲不第一個(gè)出場,也不最后一個(gè)出場,則不同的安排方法種數(shù)是()

A.120

B.240

C.480

D.720答案:C32.=(2,1),=(3,4),則向量在向量方向上的投影為()

A.

B.

C.2

D.10答案:C33.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個(gè)三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.34.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長P、PF、PG、PH交對(duì)邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.35.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點(diǎn),AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點(diǎn)E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因?yàn)樗倪呅蜝EFC為梯形,所以BE∥CF.又因?yàn)锽E?平面DCF,CF?平面DCF,所以BE∥平面DCF.因?yàn)樗倪呅蜛BCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因?yàn)锽E和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因?yàn)锳E?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點(diǎn),∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.36.棱長為2的正方體ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D37.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對(duì)應(yīng)的斜率k=tan30°=33故選:C.38.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B39.下列特殊命題中假命題的個(gè)數(shù)是()

①有的實(shí)數(shù)是無限不循環(huán)小數(shù);

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B40.如圖所示,已知A、B、C三點(diǎn)不共線,O為平面ABC外的一點(diǎn),若點(diǎn)M滿足

(1)判斷三個(gè)向量是否共面;

(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),41.已知三個(gè)向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實(shí)數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實(shí)數(shù),,使p=λq+μr,故向量p、q、r共面.42.集合{1,2,3}的真子集總共有()A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選B.43.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.44.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證

≥,只要證

≥,即證

≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時(shí),常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對(duì)解決實(shí)際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.45.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.46.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.a(chǎn)x-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A47.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D48.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)49.已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對(duì)角線BD所在直線的斜率為1.

(Ⅰ)當(dāng)直線BD過點(diǎn)(0,1)時(shí),求直線AC的方程;

(Ⅱ)當(dāng)∠ABC=60°時(shí),求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因?yàn)樗倪呅蜛BCD為菱形,所以AC⊥BD.于是可設(shè)直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因?yàn)锳,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設(shè)A,C兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點(diǎn)坐標(biāo)為(3n4,n4).由四邊形ABCD為菱形可知,點(diǎn)(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因?yàn)樗倪呅蜛BCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當(dāng)n=0時(shí),菱形ABCD的面積取得最大值43.50.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C第2卷一.綜合題(共50題)1.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C2.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).3.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實(shí)數(shù)k的取值范圍是______.如果過點(diǎn)(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實(shí)數(shù)k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果過點(diǎn)(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則點(diǎn)(1,2)一定在圓x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故為:(-4,4),(-4,-2)∪(1,4).4.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.5.運(yùn)行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結(jié)果x為______.

答案:當(dāng)n=2時(shí),x=5×6+0=30,當(dāng)n=1時(shí),x=30×6+1=181,當(dāng)n=0時(shí),x=181×6+2=1088,故為:10886.若直線l經(jīng)過點(diǎn)A(-1,1),且一個(gè)法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個(gè)法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=07.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B8.已知點(diǎn)(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則實(shí)數(shù)a的取值范圍是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C9.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D10.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C11.過點(diǎn)(-1,3)且平行于直線x-2y+3=0的直線方程為()

A.x-2y+7=0

B.2x+y-1=0

C.x-2y-5=0

D.2x+y-5=0答案:A12.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7213.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A14.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C15.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時(shí),方程的解集是有限集;滿足條件______

時(shí),方程的解集是無限集;滿足條件______

時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.16.給出以下命題:(1)若非零向量a與b互為負(fù)向量,則a∥b;(2)|a|=0是a=0的充要條件;(3)若|a|=|b|,則a=±b;(4)物理學(xué)中的作用力和反作用力互為負(fù)向量.其中為真命題的是______.答案:(1)若非零向量a與b互為負(fù)向量,根據(jù)相反向量的定義可知a∥b,故正確;(2)|a|=0則a=0,a=0則|a|=0,故|a|=0是a=0的充要條件,故正確;(3)若|a|=|b|,則兩向量模等,方向任意,故不正確;(4)物理學(xué)中的作用力和反作用力大小相等,方向相反,故互為負(fù)向量,故正確故為:(1)(2)(4)17.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.18.教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過建立直角坐標(biāo)系,用代數(shù)中的函數(shù)思想來解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.19.已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()

A.

B.

C.2

D.3

答案:C20.若p、q是兩個(gè)簡單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D21.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(

A.-2

B.-1

C.0

D.1答案:B22.在500個(gè)人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個(gè)未用血清的人作比較,結(jié)果如下:

未感冒

感冒

合計(jì)

試驗(yàn)過

252

248

500

未用過

224

276

500

合計(jì)

476

524

1000

根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()

A.血清試驗(yàn)與否和預(yù)防感冒有關(guān)

B.血清試驗(yàn)與否和預(yù)防感冒無關(guān)

C.通過是否進(jìn)行血清試驗(yàn)可以預(yù)測是否得感冒

D.通過是否得感冒可以推斷是否進(jìn)行了血清試驗(yàn)答案:A23.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級(jí)各類中小學(xué)每年都要在體育教學(xué)中實(shí)施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測試成績?cè)赱85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.

現(xiàn)從佛山市某校高一年級(jí)的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測試成績?nèi)缦拢?/p>

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計(jì)該校高一年級(jí)體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);

(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示);

(3)請(qǐng)你依據(jù)所給數(shù)據(jù)和上述廣東省標(biāo)準(zhǔn),對(duì)該校高一學(xué)生的體能素質(zhì)給出一個(gè)簡短評(píng)價(jià).答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:

分組

頻數(shù)

頻率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀的有1030×900=300人

…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學(xué)期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學(xué)生體能素質(zhì)良好,但仍有待進(jìn)一步提高,還需積極參加體育鍛煉.24.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C25.已知三角形ABC的一個(gè)頂點(diǎn)A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點(diǎn)斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0

求得x=3y=1,故點(diǎn)B的坐標(biāo)為(3,1).設(shè)點(diǎn)A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對(duì)稱點(diǎn)為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0

求得a=1b=2,故點(diǎn)M(1,2),由兩點(diǎn)式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點(diǎn)C的坐標(biāo)為(2,52),由此可得得AC的方程為x=2.26.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過定點(diǎn)()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C27.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當(dāng)n=1時(shí),不等式左端=1,右端=2,所以不等式成立;(2)假設(shè)n=k(k≥1)時(shí),不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當(dāng)n=k+1時(shí),不等式也成立.綜合(1)、(2)得:當(dāng)n∈N*時(shí),都有1+12+13+…+1n<2n.證法二:設(shè)f(n)=2n-(1+12+13+…+1n),那么對(duì)任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對(duì)任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.28.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()

A.

B.

C.

D.

答案:D29.讀下面的程序:

上面的程序在執(zhí)行時(shí)如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B30.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)31.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]32.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D33.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1434.集合{0,1}的子集有()個(gè).A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個(gè),故選D.35.設(shè)

是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D36.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0

(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c37.過點(diǎn)A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當(dāng)切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點(diǎn)到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當(dāng)切線的斜率不存在時(shí),直線為:x=3,滿足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.38.已知單位向量a,b的夾角為,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B39.(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切

⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.40.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點(diǎn),且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點(diǎn)E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點(diǎn)D為AE的中點(diǎn),AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:3441.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A42.某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)這種抽樣方法是哪一種?

(2)將這兩組數(shù)據(jù)用莖葉圖表示;

(3)將兩組數(shù)據(jù)比較,說明哪個(gè)車間產(chǎn)品較穩(wěn)定.答案:(1)因?yàn)殚g隔時(shí)間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因?yàn)?x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.43.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長度為()

A.

B.

C.

D.答案:B44.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.45.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.46.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.47.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1348.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)49.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:50.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.第3卷一.綜合題(共50題)1.拋物線y=ax2(其中a>0)的焦點(diǎn)坐標(biāo)是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D2.若{、、}為空間的一組基底,則下列各項(xiàng)中,能構(gòu)成基底的一組向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C3.下列各量:①密度

②浮力

③風(fēng)速

④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.4.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對(duì)應(yīng)的斜率k=tan30°=33故選:C.5.函數(shù)y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是()A.

B.

C.

D.

答案:對(duì)于A:函數(shù)y=ax+b遞增可得a>0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0故A正確對(duì)于B:函數(shù)y=ax+b遞增可得a>0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故B不正確對(duì)于C:函數(shù)y=ax+b遞減可得a<0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故C不正確對(duì)于D:函數(shù)y=ax+b遞減可得a<0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞增可得b>1且a>0,矛盾,故D不正確故選A6.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(

)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B7.為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集以下數(shù)據(jù)______.答案:為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機(jī)變量的觀測值公式,得出結(jié)果.故為:男女生中喜歡或不喜歡足球的人數(shù).8.在極坐標(biāo)系中,點(diǎn)(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標(biāo)系中,點(diǎn)(2

π6)化為直角坐標(biāo)為(3,1),直線ρsinθ=2化為直角坐標(biāo)方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(diǎn)(2

,

π6)到直線ρsinθ=2的距離1,故為:1.9.如圖程序輸出的結(jié)果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B10.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.11.下列關(guān)于算法的說法中正確的個(gè)數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對(duì)于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個(gè)數(shù)是3.故選C.12.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.13.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.14.(文)對(duì)于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運(yùn)算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號(hào)是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.15.復(fù)數(shù),且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C16.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).17.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級(jí)各類中小學(xué)每年都要在體育教學(xué)中實(shí)施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測試成績?cè)赱85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.

現(xiàn)從佛山市某校高一年級(jí)的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測試成績?nèi)缦拢?/p>

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計(jì)該校高一年級(jí)體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);

(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示);

(3)請(qǐng)你依據(jù)所給數(shù)據(jù)和上述廣東省標(biāo)準(zhǔn),對(duì)該校高一學(xué)生的體能素質(zhì)給出一個(gè)簡短評(píng)價(jià).答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:

分組

頻數(shù)

頻率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀的有1030×900=300人

…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學(xué)期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學(xué)生體能素質(zhì)良好,但仍有待進(jìn)一步提高,還需積極參加體育鍛煉.18.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域?yàn)閧2,3,4,5}.19.對(duì)于空間中的三個(gè)向量,

,

,它們一定是()

A.共面向量

B.共線向量

C.不共面向量

D.以上均不對(duì)答案:A20.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:421.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°22.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-223.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.24.若lga,lgb是方程2x2-4x+1=0的兩個(gè)根,則的值等于

A.2

B.

C.4

D.答案:A25.在同一平面直角坐標(biāo)系中,直線變成直線的伸縮變換是()A.B.C.D.答案:A解析:解:設(shè)直線上任意一點(diǎn)(x′,y′),變換前的坐標(biāo)為(x,y),則根據(jù)直線變成直線則伸縮變換是,選A26.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個(gè)單位后的圖象大致是下圖中的()

A.

B.

C.

D.

答案:B27.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.28.在畫兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的(

A.預(yù)報(bào)變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報(bào)變量y軸上

C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上

D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B29.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A30.長方體的長、寬、高之比是1:2:3,對(duì)角線長是214,則長方體的體積是

______.答案:長方體的長、寬、高之比是1:2:3,所以長方體的長、寬、高是x:2x:3x,對(duì)角線長是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長方體的長、寬、高是2,4,6;長方體的體積是:2×4×6=48故為:4831.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A32.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.33.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對(duì)答案:B34.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C35.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()

A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確

B.(1)與(2)的假設(shè)都正確

C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤

D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A36.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:937.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長線交它的外接圓于點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論