版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年天津濱海汽車工程職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知直線過點A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點都在l上答案:C2.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個紅球的事件包括C22+C21C31=7個基本事件,根據(jù)古典概型公式得到P=710,故為:710.3.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進(jìn)行分析,抽取了總成績介于350分到650分之間的10000名學(xué)生成績,并根據(jù)這10000名學(xué)生的總成績畫了樣本的頻率分布直方圖.為了進(jìn)一步分析學(xué)生的總成績與各科成績等方面的關(guān)系,要從這10000名學(xué)生中,再用分層抽樣方法抽出200人作進(jìn)一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B4.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.5.甲,乙兩個工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結(jié)論:()
工人
甲
乙
廢品數(shù)
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些
B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些
C.兩人的產(chǎn)品質(zhì)量一樣好
D.無法判斷誰的質(zhì)量好一些答案:B6.運用三段論推理:
復(fù)數(shù)不可以比較大小,(大前提)
2010和2011都是復(fù)數(shù),(小前提)
2010和2011不可以比較大?。ńY(jié)
論)
該推理是錯誤的,產(chǎn)生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個前提和一個結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯誤的,該推理是錯誤的,產(chǎn)生錯誤的原因是大前提錯誤.故為:大前提7.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B8.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.9.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)10.已知圓C:x2+y2=12,直線l:4x+3y=25.
(1)圓C的圓心到直線l的距離為______;
(2)圓C上任意一點A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是從這個圓上隨機(jī)的取一個點,對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點,根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1611.若函數(shù)f(x)=x+1的值域為(2,3],則函數(shù)f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]12.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C13.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C14.在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D15.拋物線y=4x2的焦點坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點坐標(biāo)為(0,116)故為(0,116)16.(Ⅰ)解關(guān)于x的不等式(lgx)2-lgx-2>0;
(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對于|m|≤1恒成立,求x的取值范圍.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴l(xiāng)gx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)設(shè)y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.當(dāng)y=1時,不等式不成立.設(shè)f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調(diào)函數(shù).當(dāng)-1≤m≤1時,若要f(m)>0?f(1)>0f(-1)>0.?y2-2y-1+1-y>0y2-2y-1+y-1>0.?y2-3y>0y2-y-2>0.?y<0或y>3y<-1或y>2.則y<-1或y>3.∴l(xiāng)gx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范圍是(0,110)∪(103,+∞).17.一個完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來表示程序的開始和結(jié)束,還要包括處理框,用來處理程序的執(zhí)行.故為:起止框、處理框.18.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.19.甲射擊運動員擊中目標(biāo)為事件A,乙射擊運動員擊中目標(biāo)為事件B,則事件A,B為()
A.互斥事件
B.獨立事件
C.對立事件
D.不相互獨立事件答案:B20.否定結(jié)論“至少有一個解”的說法中,正確的是()
A.至多有一個解
B.至少有兩個解
C.恰有一個解
D.沒有解答案:D21.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.22.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時,預(yù)計小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:45023.某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總運費與總存儲費用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運費為4萬元/次,一年的總存儲費用為4x萬元,一年的總運費與總存儲費用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運費與總存儲費用之和最?。蕿椋?0.24.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.25.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A26.設(shè)、、為實數(shù),,則下列四個結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結(jié)論.27.如圖,圓周上按順時針方向標(biāo)有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數(shù)點上,則下次只能跳一個點;若停在偶數(shù)點上,則跳兩個點.該青蛙從“5”這點起跳,經(jīng)2
011次跳后它停在的點對應(yīng)的數(shù)字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點是1.故為128.一個簡單多面體的面都是三角形,頂點數(shù)V=6,則它的面數(shù)為______個.答案:∵已知多面體的每個面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.29.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.30.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點A(3,5)的圓的切線方程;
(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點A(3,5)的直線?的方程為y-5=k(x-3).因為直線?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因為原點在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.31.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.
(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.32.(本題10分)設(shè)函數(shù)的定義域為A,的定義域為B.(1)求A;
(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略33.在統(tǒng)計中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動大小
D.最大值和最小值答案:C34.若直線x-y-1=0與直線x-ay=0的夾角為,則實數(shù)a等于()
A.
B.0
C.
D.0或答案:D35.老師在班級50名學(xué)生中,依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是()
A.隨機(jī)抽樣
B.分層抽樣
C.系統(tǒng)抽樣
D.以上都是答案:C36.下列選項中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因為集合中元素具有:確定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.37.已知棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.38.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點在直線的下方的概率是636=16故選A.39.如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準(zhǔn)線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D40.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-π4)
(1)求直線l的傾斜角;
(2)若直線l與曲線C交于A,B兩點,求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過點(0,22),傾斜角為60°的直線.(2)l的直角坐標(biāo)方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標(biāo)方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.41.某商人將彩電先按原價提高40%,然后“八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺144元,那么每臺彩電原價是______元.答案:設(shè)每臺彩電原價是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.42.圖是正方體平面展開圖,在這個正方體中
①BM與ED垂直;
②DM與BN垂直.
③CN與BM成60°角;④CN與BE是異面直線.
以上四個命題中,正確命題的序號是______.答案:由已知中正方體的平面展開圖,我們可以得到正方體的直觀圖如下圖所示:由正方體的幾何特征可得:①BM與ED垂直,正確;
②DM與BN垂直,正確;③CN與BM成60°角,正確;④CN與BE平行,故CN與BE是異面直線,錯誤;故為:①②③43.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.44.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對答案:因為“△ABC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.45.若a,b∈{2,3,4,5,7},則可以構(gòu)成不同的橢圓的個數(shù)為()
A.10
B.20
C.5
D.15答案:B46.已知O、A、M、B為平面上四點,且,則()
A.點M在線段AB上
B.點B在線段AM上
C.點A在線段BM上
D.O、A、M、B四點一定共線答案:B47.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D48.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12449.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.50.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.38第2卷一.綜合題(共50題)1.一個家庭有兩個小孩,假設(shè)生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()
A.
B.
C.
D.答案:D2.擬定從甲地到乙地通話m分鐘的電話費由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.3.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.4.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.5.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點D,與圓交于點E,連接AE,已知ED=3,BD=6,則線段AE的長=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:336.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.7.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A8.對賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達(dá)式其中“=”為賦值號.故選A。點評:簡單題,賦值語句的一般格式是:變量名=表達(dá)式其中"="為賦值號。9.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.10.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設(shè)同一頂點的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.11.如圖的算法的功能是______.輸出結(jié)果i=______,i+2=______.答案:框圖首先輸入變量i的值,判斷i(i+2)=624,執(zhí)行輸出i,i+2;否則,i=i+2.算法結(jié)束.故此算法執(zhí)行的是求積為624的兩個連續(xù)偶數(shù),i=24,i+2=26;故為:求積為624的兩個連續(xù)偶數(shù),24,26.12.從30個足球中抽取10個進(jìn)行質(zhì)量檢測,說明利用隨機(jī)數(shù)法抽取這個樣本的步驟及公平性.答案:第一步:首先將30個足球編號:00,01,02…29,第二步:在隨機(jī)數(shù)表中隨機(jī)的選一個數(shù)作為開始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個具有10個數(shù)據(jù)的樣本.其公平性在于:第一隨機(jī)數(shù)表中每一個位置上出現(xiàn)的哪一個數(shù)都是等可能的,第二從30個個體中抽到那一個個體的號碼也是機(jī)會均等的,基于以上兩點,利用隨機(jī)數(shù)表抽取樣本保證了各個個體被抽到的機(jī)會是等可能的.13.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:414.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.15.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.
(Ⅰ)求∠ADF的度數(shù);
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3316.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.17.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對x分3種情況討論:①當(dāng)x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時,不等式的解集為?.②當(dāng)0≤x<12時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時其解集為{x|0<x<12}.③當(dāng)x≥12
時,原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時其解集為{x|12≤x<2},?∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.18.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A19.x2+(m-3)x+m=0
一個根大于1,一個根小于1,m的范圍是______.答案:設(shè)f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.20.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標(biāo)是(0,0,149)故為:(0,0,149)21.已知x、y的取值如下表:x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(.x,.y)在回歸直線上,計算得.x=2,.y=4.5;代入得a=2.6;故為2.6.22.平面ABCD中,點A坐標(biāo)為(0,1,1),點B坐標(biāo)為(1,2,1),點C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.23.橢圓的短軸長是2,一個焦點是(3,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:∵橢圓的一個焦點是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點在x軸上,∴橢圓的標(biāo)準(zhǔn)方程是x24+y2=1故為x24+y2=124.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點O、半徑是a2+b2的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為F(2,0),其短軸的一個端點到點F的距離為3.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準(zhǔn)圓”的方程為x2+y2=4;(2)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設(shè)過點P且與橢圓相切的直線l的方程為my=x-2,聯(lián)立my=x-2x23+y2=1,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).設(shè)點B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)25.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)26.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關(guān)于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關(guān)于x軸、y軸、坐標(biāo)原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤27.在下列條件中,使M與不共線三點A、B、C,一定共面的是
[
]答案:C28.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C29.已知△ABC的三個頂點A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).30.下列四個命題中,正確的有
個
①;
②;
③,使;
④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題31.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.32.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12033.在直角坐標(biāo)系中,畫出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)34.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設(shè)正確的是()
A.假設(shè)a、b、c都是偶數(shù)
B.假設(shè)a、b、c都不是偶數(shù)
C.假設(shè)a、b、c至多有一個偶數(shù)
D.假設(shè)a、b、c至多有兩個偶數(shù)答案:B35.方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<136.如果命題“曲線C上的點的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應(yīng)的點都在曲線C上
C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C37.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O(shè)為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5238.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.39.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點在直線的下方的概率是636=16故選A.40.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.41.已知圓C:x2+y2-4x-6y+12=0的圓心在點C,點A(3,5),求:
(1)過點A的圓的切線方程;
(2)O點是坐標(biāo)原點,連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切線的斜率不存在時,對直線x=3,C(2,3)到直線的距離為1,滿足條件;當(dāng)k存在時,設(shè)直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.42.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81
243=81×3+0
則324與243的最大公約數(shù)為81又135=81×1+54
81=54×1+27
54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。43.若方程sin2x+4sinx+m=0有實數(shù)解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D44.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與EF、CO共線的向量;
(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;45.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24046.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點共線,由三點共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:147.如圖,四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點P的⊙O的切線長是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.48.已知復(fù)數(shù)z=2+i,則z2對應(yīng)的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復(fù)數(shù)z2的實部等于3,虛部等于4.所以z2對應(yīng)的點在第Ⅰ象限.故選A.49.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:550.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:2第3卷一.綜合題(共50題)1.某校選修乒乓球課程的學(xué)生中,高一年級有40名,高二年級有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了8名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級有40名學(xué)生,在高一年級的學(xué)生中抽取了8名,∴每個個體被抽到的概率是
840=15∵高二年級有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.2.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()
A.a(chǎn)b
B.ab
C.a(chǎn)b
D.2ab答案:B3.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-24.已知拋物線的頂點在原點,焦點在x軸的正半軸上,F(xiàn)為焦點,A,B,C為拋物線上的三點,且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.5.下圖是由哪個平面圖形旋轉(zhuǎn)得到的(
)答案:A6.已知菱形ABCD的頂點A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(Ⅰ)當(dāng)直線BD過點(0,1)時,求直線AC的方程;
(Ⅱ)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因為四邊形ABCD為菱形,所以AC⊥BD.于是可設(shè)直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因為A,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設(shè)A,C兩點坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點坐標(biāo)為(3n4,n4).由四邊形ABCD為菱形可知,點(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因為四邊形ABCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當(dāng)n=0時,菱形ABCD的面積取得最大值43.7.設(shè)拋物線y2=2px(p>0)上一點A(1,2)到點B(x0,0)的距離等于到直線x=-1的距離,則實數(shù)x0的值是______.答案:∵點A(1,2)在拋物線y2=2px(p>0)上,∴4=2p,p=2,故拋物線方程為y2=4x,準(zhǔn)線方程為x=1.由點A(1,2)到點B(x0,0)的距離等于到直線x=-1的距離,故點B(x0,0)為拋物線y2=4x的焦點,故x0=1.故為1.8.節(jié)假日時,國人發(fā)手機(jī)短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()
A.27
B.37
C.38
D.8答案:A9.若非零向量滿足,則()
A.
B.
C.
D.答案:C10.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是()
A.
B.
C.
D.答案:B11.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.12.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④13.從一批羽毛球產(chǎn)品中任取一個,質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B14.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.15.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運用能力,對解決實際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.16.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.17.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.18.將一枚均勻硬幣
隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()
A.
B.
C.
D.答案:D19.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()
A.3
B.2
C.
D.答案:A20.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實數(shù)λ1,λ2有無數(shù)對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個向量,∴實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時實數(shù)λ1,λ2有且只有一對,而對實數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.21.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實施的變換為()
A.x=3x1-1
B.x=3x1+1
C.x=4x1-1
D.x=4x1+1答案:C22.某程序框圖如圖所示,該程序運行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運行過程中各變量值變化如下表:是否繼續(xù)循環(huán)
S
K循環(huán)前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最終輸出結(jié)果k=4故為A23.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設(shè)y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數(shù)f(x)的值域為[2,32].故為:C.24.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.25.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>
當(dāng)n=1時,有nn+1______(n+1)n(填>、=或<);
當(dāng)n=2時,有nn+1______(n+1)n(填>、=或<);
當(dāng)n=3時,有nn+1______(n+1)n(填>、=或<);
當(dāng)n=4時,有nn+1______(n+1)n(填>、=或<);
猜想一個一般性的結(jié)論,并加以證明.答案:當(dāng)n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當(dāng)n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當(dāng)n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當(dāng)n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時也成立,∴當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.26.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.27.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數(shù)為何()
A.50°
B.60°
C.100°
D.120°
答案:C28.(1+x)6的各二項式系數(shù)的最大值是______.答案:根據(jù)二項展開式的性質(zhì)可得,(1+x)6的各二項式系數(shù)的最大值C36=20故為:2029.已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知動點P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動點P在以F(1,0)為焦點,以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.30.設(shè)四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C31.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點在y軸,由此排除A.故選C.32.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,
因此可排除B、C、D;
故選A.33.俊、杰兄
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 業(yè)務(wù)傭金合同范本(2024版)
- 2024版教師實習(xí)的協(xié)議書模板
- 2025年度企業(yè)財務(wù)風(fēng)險管理與內(nèi)部控制咨詢服務(wù)協(xié)議3篇
- 2025年度昆山住宅翻新補(bǔ)貼申請速領(lǐng)指南合同3篇
- 2025年度常年法律顧問高端法律服務(wù)合同4篇
- 2025年度股票期權(quán)交易市場監(jiān)管合規(guī)性評估協(xié)議
- 2025年度重慶市文化藝術(shù)區(qū)商品房買賣合同書
- 二零二五年度離婚子女撫養(yǎng)費及債務(wù)結(jié)算協(xié)議
- 金華浙江金華永康市經(jīng)濟(jì)和信息化局工作人員招聘筆試歷年參考題庫附帶答案詳解
- 2025年度餐飲店廚師團(tuán)隊招聘服務(wù)合同
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 物流無人機(jī)垂直起降場選址與建設(shè)規(guī)范
- 冷庫存儲合同協(xié)議書范本
- AQ/T 4131-2023 煙花爆竹重大危險源辨識(正式版)
- 武術(shù)體育運動文案范文
- 設(shè)計服務(wù)合同范本百度網(wǎng)盤
- 2024年市級??谱o(hù)士理論考核試題及答案
- 肺炎臨床路徑
- 供應(yīng)商供貨服務(wù)方案(2篇)
評論
0/150
提交評論