2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年呂梁職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若A、B兩點的極坐標為A(4

,

π3),B(6,0),則AB中點的極坐標是

______(極角用反三角函數(shù)值表示)答案:A的直角坐標為:(2,23),所以AB的中點坐標為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標是:(19,

arctan34)故為:(19,

arctan34)2.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()

(1)應充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應越?。?/p>

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C3.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).4.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.5.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.6.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).7.某處有供水龍頭5個,調(diào)查表明每個水龍頭被打開的可能性為,隨機變量ξ表示同時被打開的水龍頭的個數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨立重復試驗中,恰好發(fā)生k次的概率.對5個水龍頭的處理可視為做5次試驗,每次試驗有2種可能結(jié)果:打開或未打開,相應的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.8.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過點()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B9.根據(jù)下列條件,求圓的方程:

(1)過點A(1,1),B(-1,3)且面積最??;

(2)圓心在直線2x-y-7=0上且與y軸交于點A(0,-4),B(0,-2).答案:(1)過A、B兩點且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.10.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D11.下列在曲線上的點是()

A.

B.

C.

D.答案:D12.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.13.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點D,則圖中共有直角三角形的個數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.14.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時,f(x)=1x≥13,解得x∈?;x≥0時,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.15.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D16.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C17.設斜率為2的直線l過拋物線y2=ax(a>0)的焦點F,且和y軸交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線的方程為______.答案:焦點坐標(a4,0),|0F|=a4,直線的點斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x18.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.19.設A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3520.復數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.21.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當x=0時,z=0,當x=1,y=2時,z=6,當x=1,y=3時,z=12,故所有元素之和為18,故選D22.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()

A.3

B.4

C.5

D.6答案:C23.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.24.以拋物線的焦點弦為直徑的圓與其準線的位置關(guān)系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A25.要從已編號(1~60)的60枚最新研制的某型導彈中隨機抽取6枚來進行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B26.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.27.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()

A.5-

B.5+

C

D.10答案:B28.抽樣調(diào)查在抽取調(diào)查對象時()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機會均等的原理,即在抽樣過程中,各個體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項符合題意.故選:A29.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域為{x|x≠0},而g(x)的定義域為R,故A錯誤;B、∵f(x)=2lgx,的定義域為{x|x>0},而g(x)=lgx2的定義域為R,故B錯誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域為R,g(x)的定義域為{x|x≥0},故C錯誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域為R,故D正確.故選D.30.如圖,正方體ABCD-A1B1C1D1的棱長為1.

(1)求A1C與DB所成角的大??;

(2)求二面角D-A1B-C的余弦值;

(3)若點E在A1B上,且EB=1,求EC與平面ABCD所成角的大小.答案:(1)如圖建立空間直角坐標系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設n=(0,0,1)是平面ABCD的一個法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.31.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.32.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為33.以下關(guān)于排序的說法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時,最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時,最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點知C正確.34.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題35.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.36.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()

A.-2<a<2

B.0<a<2

C.a(chǎn)<-2或a>2

D.a(chǎn)=±2答案:A37.用冒泡法對43,34,22,23,54從小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A38.已知兩條直線l1:y=x,l2:ax-y=0,其中a為實數(shù),當這兩條直線的夾角在(0,)內(nèi)變動時,a的取值范圍是(

A.(0,1)

B.

C.

D.答案:C39.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數(shù)模型,應選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.40.設b是a的相反向量,則下列說法錯誤的是()

A.a(chǎn)與b的長度必相等

B.a(chǎn)與b的模一定相等

C.a(chǎn)與b一定不相等

D.a(chǎn)是b的相反向量答案:C41.在同一個坐標系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D42.已知函數(shù)f(x)對其定義域內(nèi)任意兩個實數(shù)a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數(shù)f(x)的圖象與x軸至多有一個交點.答案:證明:假設函數(shù)f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數(shù)f(x)對其定義域內(nèi)任意實數(shù)x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據(jù)假設,x1,x2是函數(shù)f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數(shù)f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數(shù)f(x)的圖象與x軸至多有一個交點…(14分)43.已知x、y的取值如下表:x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(.x,.y)在回歸直線上,計算得.x=2,.y=4.5;代入得a=2.6;故為2.6.44.類比“等差數(shù)列的定義”給出一個新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項的和相等的數(shù)列叫等和數(shù)列B.從第一項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列C.從第二項起,以后每一項與前一項的差都不相等的數(shù)列叫等和數(shù)列D.從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項起,以后每一項與前一項的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列故選D45.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()

A.a(chǎn)<b<c

B.a(chǎn)<c<B

C.c<b<a

D.b<c<a

答案:C46.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.47.設兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:848.72的正約數(shù)(包括1和72)共有______個.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計數(shù)原理共3×4個.故為:12.49.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C50.在極坐標系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標方程是______.答案:(22,π4)的直角坐標為:(2,2),圓ρ=4sinθ的直角坐標方程為:x2+y2-4y=0;顯然,圓心坐標(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標方程是:ρcosθ=2故為:ρcosθ=2第2卷一.綜合題(共50題)1.設i為虛數(shù)單位,若(x+i)(1-i)=y,則實數(shù)x,y滿足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C2.已知原命題“兩個無理數(shù)的積仍是無理數(shù)”,則:

(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;

(2)否命題是“兩個不都是無理數(shù)的積也不是無理數(shù)”;

(3)逆否命題是“乘積不是無理數(shù)的兩個數(shù)都不是無理數(shù)”;

其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時否定原命題的條件和結(jié)論得到否命題:“兩個不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個數(shù)不都是無理數(shù)”.所以逆否命題錯誤.故為:(1)(2).3.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.4.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A5.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).6.設F1、F2分別是橢圓x225+y216=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.7.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.8.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應的元素是4,集合A中還有兩個元素2和3,2可以和4對應,也可以和5對應,3可以和4對應,也可以和5對應,每個元素有兩種不同的對應,∴共有2×2=4種結(jié)果,故選B.9.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B10.若一元二次方程x2+(a-1)x+1-a2=0有兩個正實數(shù)根,則a的取值范圍是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C11.設a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當且僅當a=b=c時,等號成立.12.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D13.棱長為a的正四面體中,AB?BC+AC?BD=______.答案:棱長為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.14.設集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B15.過點P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.16.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.17.設集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關(guān)系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.18.將一枚均勻硬幣

隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D19.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設c=1a+2b,則即∵a、b不共線,向量a、b、c共面.20.用數(shù)學歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當n=2時,左邊=12+13+14=1312>1,∴n=2時成立(2分)(2)假設當n=k(k≥2)時成立,即1k+1k+1+1k+2+…+1k2>1那么當n=k+1時,左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)21.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.22.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點集B.第四象限內(nèi)的點集C.第二、四象限內(nèi)的點集D.不在第一、三象限內(nèi)的點的集合答案:∵xy≤0,∴xy<0或xy=0當xy<0時,則有x<0y>0或x>0y<0,點(x,y)在二、四象限,當xy=0時,則有x=0或y=0,點(x,y)在坐標軸上,故選D.23.設、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對稱性,不防設≥≥,則≥左式-右式≥≥≥024.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是______

(1)有95%的把握認為“這種血清能起到預防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預防感冒的有效率為95%

(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).25.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫出當輸入一個同學的成績x時,輸出這個同學屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個成績X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束26.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.27.如圖中的陰影部分用集合表示為______.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)28.△ABC中,,若,則m+n=()

A.

B.

C.

D.1答案:B29.把10個相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標有A的一個小正方體搬去,這時外表含有的小正方形個數(shù)與搬去前相比(

)答案:A30.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個點

B.2個點

C.1個點

D.四條直線答案:D31.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()

A.總工程師和專家辦公室

B.開發(fā)部

C.總工程師、專家辦公室和開發(fā)部

D.總工程師、專家辦公室和所有七個部答案:C32.用隨機數(shù)表法進行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數(shù)表法進行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.33.若一元二次方程kx2-4x-5=0

有兩個不相等實數(shù)根,則k

的取值范圍是______.答案:∵kx2-4x-5=0有兩個不相等的實數(shù)根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.34.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.35.直線kx-y+1=3k,當k變動時,所有直線都通過定點()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C36.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.37.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個元素,那么實數(shù)m的取值范圍是

______.答案:如果P∩Q有且只有一個元素,即函數(shù)y=m與y=ax+1(a>0,且a≠1)圖象只有一個公共點.∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)38.用數(shù)學歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:證明:(1)當n=1時,左邊=12>1124,∴n=1時成立(2分)(2)假設當n=k(k≥1)時成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當n=k+1時,左邊=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n≥1都成立(8分)39.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:240.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個點的坐標是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B41.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C42.在△ABC中,=,=,且=2,則等于()

A.+

B.+

C.+

D.+答案:A43.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.

(1)求中三等獎的概率;

(2)求中獎的概率.答案:(1)設“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.44.已知空間三點的坐標為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;245.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.46.設i為虛數(shù)單位,若=b+i(a,b∈R),則a,b的值為()

A.a(chǎn)=0,b=1

B.a(chǎn)=1,b=0

C.a(chǎn)=1,b=1

D.a(chǎn)=,b=-1答案:B47.設A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.48.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因為函數(shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項的系數(shù)為負?2k-4<0?k<2.故為:C49.在殘差分析中,殘差圖的縱坐標為______.答案:有殘差圖的定義知道,作圖時縱坐標為殘差,橫坐標可以選為樣本編號,或身高數(shù)據(jù),或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.50.(x+2y)4展開式中各項的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.第3卷一.綜合題(共50題)1.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.2.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.3.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A4.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).5.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C6.下面的結(jié)論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運算下去的C.完成一件事情的算法有且只有一種D.設計算法要本著簡單方便的原則答案:算法需每一步都按順序進行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設計算法要盡量運算簡單,節(jié)約時間,故D正確,故選D.7.以下關(guān)于排序的說法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時,最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時,最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點知C正確.8.在平面直角坐標系中,雙曲線Γ的中心在原點,它的一個焦點坐標為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個等式是______.答案:因為e1=(2,1)、e2=(2,-1)是漸進線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.9.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.10.下列輸入語句正確的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A11.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B12.設z是復數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.13.若一元二次方程kx2-4x-5=0

有兩個不相等實數(shù)根,則k

的取值范圍是______.答案:∵kx2-4x-5=0有兩個不相等的實數(shù)根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.14.若圓C過點M(0,1)且與直線l:y=-1相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足AP=λPB(λ>1).

(I)求曲線E的方程;

(II)若t=6,直線AB的斜率為12,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;

(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與QA?QB均為定值.答案:【解】(Ⅰ)依題意,點C到定點M的距離等于到定直線l的距離,所以點C的軌跡為拋物線,曲線E的方程為x2=4y.(Ⅱ)直線AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以拋物線x2=4y在點A處切線的斜率為y'|x=6=3.直線NA的方程為y-9=-13(x-6),即y=-13x+11.①線段AB的中點坐標為(1,132),線段AB中垂線方程為y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圓C的方程為(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)設A(x1,x124),B(x2,x224),Q(a,-1).過點A的切線方程為y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直線AB的方程為y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA?QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.15.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B16.直線l過拋物線y2=2px(p>0)的焦點,且與拋物線交于A、B兩點,若線段AB的長是8,AB的中點到y(tǒng)軸的距離是2,則此拋物線方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:設A(x1,y1),B(x2,y2),根據(jù)拋物線定義,x1+x2+p=8,∵AB的中點到y(tǒng)軸的距離是2,∴x1+x22=2,∴p=4;∴拋物線方程為y2=8x故選B17.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.

x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:318.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當點A在圓C上時,直線l與圓C相切;

②當點A在圓C內(nèi)時,直線l與圓C相離;

③當點A在圓C外時,直線l與圓C相交.

其中正確的命題個數(shù)是()

A.0

B.1

C.2

D.3答案:D19.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.20.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)21.設xi,yi

(i=1,2,…,n)是實數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.22.如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖,判斷框內(nèi)應填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進制數(shù)11111(2)化為十進制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應為i>4.故選D.23.對某種電子元件進行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C24.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A25.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B26.拋物線x=14ay2的焦點坐標為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標是(a,0)故選B.27.如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動,設頂點A(x,y)的軌跡方程是y=f(x),則f(x)在其相鄰兩個零點間的圖象與x軸所圍區(qū)域的面積為______.答案:作出點A的軌跡中相鄰兩個零點間的圖象,如圖所示.其軌跡為兩段圓弧,一段是以C為圓心,CA為半徑的四分之一圓??;一段是以B為圓心,BA為半徑,圓心角為3π4的圓?。渑cx軸圍成的圖形的面積為12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故為:2+4π.28.在空間直角坐標系中,點(-2,1,4)關(guān)于x軸的對稱點的坐標為()

A.(-2,1,-4)

B.(-2,-1,-4)

C.(2,1,-4)

D.(2,-1,4)答案:B29.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數(shù)為()個.

A.0

B.1

C.2

D.3答案:B30.若一點P的極坐標是(r,θ),則它的直角坐標如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點P的極坐標是(r,θ)的直角坐標為:(rcosθ,rsinθ).31.已知兩條直線l1:y=x,l2:ax-y=0,其中a為實數(shù),當這兩條直線的夾角在(0,)內(nèi)變動時,a的取值范圍是(

A.(0,1)

B.

C.

D.答案:C32.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C33.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內(nèi)的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當x=2kπ+π2時,函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號為③故為③34.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.35.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標方程;

(2)當0≤t<π2及π≤t<3π2時,各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標普通方程為x2-y24=1.(2)當0≤t≤π2時,x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點);當0≤t≤3π2時,x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點).36.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論