模式識別神經(jīng)網(wǎng)絡(luò)課件_第1頁
模式識別神經(jīng)網(wǎng)絡(luò)課件_第2頁
模式識別神經(jīng)網(wǎng)絡(luò)課件_第3頁
模式識別神經(jīng)網(wǎng)絡(luò)課件_第4頁
模式識別神經(jīng)網(wǎng)絡(luò)課件_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Stateofcharge(SOC)estimationofhighpowerNI-MHrechargeablebatterywithartificialneuralnetwork(ANN)Speaker:FuWeili080305008automatizationABSTRACTThispaperpresentsathree-layerfeed-forwardback-propagation(BP)artificialneuralnetwork(ANN),whoseoutputisbatterystate-of-charge(SOC),toestimateandpredictSOCofhighpowerNi-MHrechargeablebattery.Especially,theANNcansatisfyinglyestimateSOCofbatterywhosestartingSOCisnotoriginallyknownafterabouttenminutesconstantloaddischarging(CLD),andmostofabsolutevaluesofabsoluteerrorsarenotmorethan5%.1.IntroductionofSOCSOCisaveryimportantcomponentofbatterymanagementsystem(BMS);SOCinthispaperisdefinedasEq.(1):

Ca:availabledischargingcapacityofbatterywhichisoriginallyfullycharged,isafunctionofdischargingcurrent.i:dischargingcurrent.t:time.(1)2.ConceptsofhighpowerNI-MH

rechargeablebatteryThebatteryisabletodischargeandchargeathighratecurrent;Thirteendifferentconstantcurrentdischarging(CCD)datesandtwo(0.15Ω/celland0.675Ω/cell)CLDdatesareobtained;SixCCDdatasetsareselectedtotrainANN.DischargeRateAvailableCapacity(Ah)CellPlatformVoltage(A)0.2C/3.6A18.81.271C18.21.222C17.91.203C17.21.1510C13.50.8915C-0.8Table1A18Ahbattery‘sAvailableCapacityandCellPlatformVoltageatCCDat20℃3.ANNarchitectureThefirstlayerisinputlayer;Thesecondishiddenlayer,anditsactivationfunctionsis"logsig-moid"functionswhichisdefinedasEq.(2):LS(X)=1/(1+ex)(2)TheANNoutputSOCis:SOC=W2*LS(W1*X+B1)+B2whereXistheinputvector,B1andB2arethebiasvectorsofANNinthehiddenlayerandoutputlayer.W1、W2areweightmatrices.4.SelectingofANNinputsTemperaturefactorisneglected;BasedontheexperienceandknowledgeofbatterythefollowingvariablesareinitiallyselectedascandidateinputsoftheANN:Dischargingcurrenti;AccumulatedamperehoursAh=;BatteryterminalvoltageV;Time-averagevoltagetav(t)=

;Twicetime-averagevoltagettav(t)=

;...ThemethodtodeterminateinputvariablesTherearetwobasalparameters:i,v.Otherparameterscanbederivedfromthetwoandsamplingtimet.Whenj=3infigure2,satisfyingerrorsareobtained.Figure1

flowchartoftheproceduretodeterminateANNinputs5.Testingresults

TotesttheANNmodel,otherCCDdatasetsandtwoCLDdatasetsaresimulatedbythetrainedANN.maxofabsolutevaluesofabsoluteerror(abs.err.)ofdifferentCCDdatasetsareshowninTable2.ComparisonresultsoftwoCLDdatasetsaresummarizedinTable3.CCDcurrent(A)MAX︱err︱(%)51.69151.19206.21300.59350.40401.55502.09Table2max︱abs.err︱atCCD0.15Ω/cell0.675Ω/cellFirsttimewhen︱abs.err︱<5%10min6min︱abs.err︱<5%time/totaltime62.09%50.47%Table3ComparisonresultsofSOCpredictionatCLD6.Conclusion

Comparisonsbetweensimulationandmeasurementshowthat:

①maxofabsolutevaluesofabsoluteerrorisnomorethan2.1%atCCD;②ANNcanaccuratelypredictSOCofbatterywhosestartingSOC0isnotknownoriginallyafterabouttenminutesatCLD,andmostof︱abs.err︱<5%;③50ACCDisoutofthecurrentrangeoftrainingdatasetsandcurrentsof0.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論