新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練專題04 數(shù)列的通項、求和及綜合應(yīng)用(精講精練)(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練專題04 數(shù)列的通項、求和及綜合應(yīng)用(精講精練)(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練專題04 數(shù)列的通項、求和及綜合應(yīng)用(精講精練)(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練專題04 數(shù)列的通項、求和及綜合應(yīng)用(精講精練)(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練專題04 數(shù)列的通項、求和及綜合應(yīng)用(精講精練)(原卷版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題04數(shù)列的通項、求和及綜合應(yīng)用【命題規(guī)律】數(shù)列是高考重點考查的內(nèi)容之一,命題形式多種多樣,大小均有.其中,小題重點考查等差數(shù)列、等比數(shù)列基礎(chǔ)知識以及數(shù)列的遞推關(guān)系,和其它知識綜合考查的趨勢明顯(特別是與函數(shù)、導(dǎo)數(shù)的結(jié)合問題),浙江卷小題難度加大趨勢明顯;解答題的難度中等或稍難,隨著文理同卷的實施,數(shù)列與不等式綜合熱門難題(壓軸題),有所降溫,難度趨減,將穩(wěn)定在中等偏難程度.往往在解決數(shù)列基本問題后考查數(shù)列求和,在求和后往往與不等式、函數(shù)、最值等問題綜合.在考查等差數(shù)列、等比數(shù)列的求和基礎(chǔ)上,進(jìn)一步考查“裂項相消法”、“錯位相減法”等,與不等式結(jié)合,“放縮”思想及方法尤為重要.?dāng)?shù)列與數(shù)學(xué)歸納法的結(jié)合問題,也應(yīng)適度關(guān)注.【核心考點目錄】核心考點一:等差、等比數(shù)列的基本量問題核心考點二:證明等差等比數(shù)列核心考點三:等差等比數(shù)列的交匯問題核心考點四:數(shù)列的通項公式核心考點五:數(shù)列求和核心考點六:數(shù)列性質(zhì)的綜合問題核心考點六:實際應(yīng)用中的數(shù)列問題核心考點七:以數(shù)列為載體的情境題【真題回歸】1.(2022·浙江·高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高考真題(文))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項和.若SKIPIF1<0,則公差SKIPIF1<0_______.3.(2022·全國·高考真題)已知SKIPIF1<0為等差數(shù)列,SKIPIF1<0是公比為2的等比數(shù)列,且SKIPIF1<0.(1)證明:SKIPIF1<0;(2)求集合SKIPIF1<0中元素個數(shù).4.(2022·全國·高考真題(理))記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和.已知SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)若SKIPIF1<0成等比數(shù)列,求SKIPIF1<0的最小值.5.(2022·天津·高考真題)設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,且SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0的前n項和為SKIPIF1<0,求證:SKIPIF1<0;(3)求SKIPIF1<0.6.(2022·浙江·高考真題)已知等差數(shù)列SKIPIF1<0的首項SKIPIF1<0,公差SKIPIF1<0.記SKIPIF1<0的前n項和為SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若對于每個SKIPIF1<0,存在實數(shù)SKIPIF1<0,使SKIPIF1<0成等比數(shù)列,求d的取值范圍.【方法技巧與總結(jié)】1、利用定義判斷數(shù)列的類型:注意定義要求的任意性,例如若數(shù)列SKIPIF1<0滿足SKIPIF1<0(常數(shù))(SKIPIF1<0,SKIPIF1<0)不能判斷數(shù)列SKIPIF1<0為等差數(shù)列,需要補充證明SKIPIF1<0;2、數(shù)列SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0,則SKIPIF1<0是等差數(shù)列;3、數(shù)列SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0,SKIPIF1<0為非零常數(shù),且SKIPIF1<0,則SKIPIF1<0為等比數(shù)列;4、在處理含SKIPIF1<0,SKIPIF1<0的式子時,一般情況下利用公式SKIPIF1<0SKIPIF1<0,消去SKIPIF1<0,進(jìn)而求出SKIPIF1<0的通項公式;但是有些題目雖然要求SKIPIF1<0的通項公式,但是并不便于運用SKIPIF1<0,這時可以考慮先消去SKIPIF1<0,得到關(guān)于SKIPIF1<0的遞推公式,求出SKIPIF1<0后再求解SKIPIF1<0.5、遇到形如SKIPIF1<0的遞推關(guān)系式,可利用累加法求SKIPIF1<0的通項公式,遇到形如SKIPIF1<0的遞推關(guān)系式,可利用累乘法求SKIPIF1<0的通項公式,注意在使用上述方法求通項公式時,要對第一項是否滿足進(jìn)行檢驗.6、遇到下列遞推關(guān)系式,我們通過構(gòu)造新數(shù)列,將它們轉(zhuǎn)化為熟悉的等差數(shù)列、等比數(shù)列,從而求解該數(shù)列的通項公式:(1)形如SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),可變形為SKIPIF1<0,則SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,由此可以求出SKIPIF1<0;(2)形如SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),此類問題可兩邊同時除以SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,從而變成SKIPIF1<0SKIPIF1<0,從而將問題轉(zhuǎn)化為第(1)個問題;(3)形如SKIPIF1<0,可以考慮兩邊同時除以SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0的形式,設(shè)SKIPIF1<0,則有SKIPIF1<0,從而將問題轉(zhuǎn)化為第(1)個問題.7、公式法是數(shù)列求和的最基本的方法,也是數(shù)列求和的基礎(chǔ).其他一些數(shù)列的求和可以轉(zhuǎn)化為等差或等比數(shù)列的求和.利用等比數(shù)列求和公式,當(dāng)公比是用字母表示時,應(yīng)對其是否為SKIPIF1<0進(jìn)行討論.8、用裂項相消法求和時,要對通項進(jìn)行變換,如:SKIPIF1<0,SKIPIF1<0,裂項后產(chǎn)生可以連續(xù)相互抵消的項.抵消后并不一定只剩下第一項和最后一項,也有可能前面剩兩項,后面也剩兩項,但是前后所剩項數(shù)一定相同.常見的裂項公式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0.9、用錯位相減法求和時的注意點:(1)要善于通過通項公式特征識別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“SKIPIF1<0”與“SKIPIF1<0”的表達(dá)式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“SKIPIF1<0”的表達(dá)式;(3)在應(yīng)用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.10、分組轉(zhuǎn)化法求和的常見類型:(1)若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為等差或等比數(shù)列,可采用分組求和法求SKIPIF1<0的前SKIPIF1<0項和;(2)通項公式為SKIPIF1<0,其中數(shù)列SKIPIF1<0,SKIPIF1<0是等比數(shù)列或等差數(shù)列,可采用分組求和法求和;(3)要善于識別一些變形和推廣的分組求和問題.11、在等差數(shù)列SKIPIF1<0中,若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0.在等比數(shù)列SKIPIF1<0中,若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0.12、前SKIPIF1<0項和與積的性質(zhì)(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0.=1\*GB3①SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…也成等差數(shù)列,公差為SKIPIF1<0.=2\*GB3②SKIPIF1<0也是等差數(shù)列,且SKIPIF1<0,公差為SKIPIF1<0.=3\*GB3③若項數(shù)為偶數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.若項數(shù)為奇數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.(2)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0=1\*GB3①當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…也成等比數(shù)列,公比為SKIPIF1<0=2\*GB3②相鄰SKIPIF1<0項積SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…也成等比數(shù)列,公比為SKIPIF1<0SKIPIF1<0.=3\*GB3③若項數(shù)為偶數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0;項數(shù)為奇數(shù)時,沒有較好性質(zhì).13、衍生數(shù)列(1)設(shè)數(shù)列SKIPIF1<0和SKIPIF1<0均是等差數(shù)列,且等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù).=1\*GB3①SKIPIF1<0的等距子數(shù)列SKIPIF1<0SKIPIF1<0也是等差數(shù)列,公差為SKIPIF1<0.=2\*GB3②數(shù)列SKIPIF1<0,SKIPIF1<0也是等差數(shù)列,而SKIPIF1<0是等比數(shù)列.(2)設(shè)數(shù)列SKIPIF1<0和SKIPIF1<0均是等比數(shù)列,且等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0為常數(shù).=1\*GB3①SKIPIF1<0的等距子數(shù)列SKIPIF1<0也是等比數(shù)列,公比為SKIPIF1<0.=2\*GB3②數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0也是等比數(shù)列,而SKIPIF1<0SKIPIF1<0是等差數(shù)列.14、判斷數(shù)列單調(diào)性的方法(1)比較法(作差或作商);(2)函數(shù)化(要注意擴展定義域).15、求數(shù)列最值的方法(以最大值項為例,最小值項同理)方法SKIPIF1<0:利用數(shù)列的單調(diào)性;方法2:設(shè)最大值項為SKIPIF1<0,解方程組SKIPIF1<0,再與首項比較大?。竞诵目键c】核心考點一:等差、等比數(shù)列的基本量問題【規(guī)律方法】利用等差數(shù)列中的基本量(首項,公差,項數(shù)),等比數(shù)列的基本量(首項,公比,項數(shù))翻譯條件,將問題轉(zhuǎn)換成含基本量的方程或不等式問題求解.【典型例題】例1.(2022·全國·模擬預(yù)測)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.4 B.3 C.2 D.1例2.(2022·江西·臨川一中高三階段練習(xí)(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=(

)A.80 B.100 C.120 D.143例3.(2022·新疆·高三期中(理))已知一個項數(shù)為偶數(shù)的等比數(shù)列SKIPIF1<0,所有項之和為所有奇數(shù)項之和的3倍,前4項之積為64,則SKIPIF1<0(

)A.1 B.SKIPIF1<0 C.2 D.1或SKIPIF1<0例4.(2022·全國·高三階段練習(xí)(文))已知公差不為零的等差數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,則數(shù)列SKIPIF1<0的前9項的和為(

)A.1 B.2 C.81 D.80例5.(2022·重慶八中高三階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例6.(2022·湖北·高三階段練習(xí))在公差不為零的等差數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例7.(2022·江蘇無錫·高三期中)已知兩個等差數(shù)列2,6,10,…,198及2,8,14,…,200,將這兩個等差數(shù)列的公共項按從小到大的順序組成一個新數(shù)列,則這個新數(shù)列的各項之和為(

)A.1460 B.1472C.1666 D.1678核心考點二:證明等差等比數(shù)列【規(guī)律方法】判斷或證明數(shù)列是等差、等比數(shù)列常見的方法如下.(1)定義法:對于SKIPIF1<0的任意正整數(shù):①若SKIPIF1<0為一常數(shù),則SKIPIF1<0為等差數(shù)列;②若SKIPIF1<0為常數(shù),則SKIPIF1<0為等比數(shù)列.(2)通項公式法:①若SKIPIF1<0,則SKIPIF1<0為等差數(shù)列;(2)若SKIPIF1<0,則SKIPIF1<0為等比數(shù)列.(3)中項公式法:①若SKIPIF1<0,則SKIPIF1<0為等差數(shù)列;②若SKIPIF1<0,則SKIPIF1<0為等比數(shù)列.(4)前SKIPIF1<0項和法:若SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0滿足:①SKIPIF1<0,則SKIPIF1<0為等差數(shù)列.②SKIPIF1<0,則SKIPIF1<0為等比數(shù)列.【典型例題】例8.(2022·吉林長春·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等差數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.例9.(2022·河南·高三期中(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0為等差數(shù)列;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例10.(2022·全國·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0;(2)證明:數(shù)列SKIPIF1<0為等差數(shù)列,并求數(shù)列SKIPIF1<0的通項公式;例11.(2022·四川·宜賓市敘州區(qū)第二中學(xué)校模擬預(yù)測(理))現(xiàn)有甲、乙、丙三個人相互傳接球,第一次從甲開始傳球,甲隨機地把球傳給乙、丙中的一人,接球后視為完成第一次傳接球;接球者進(jìn)行第二次傳球,隨機地傳給另外兩人中的一人,接球后視為完成第二次傳接球;依次類推,假設(shè)傳接球無失誤.(1)設(shè)乙接到球的次數(shù)為SKIPIF1<0,通過三次傳球,求SKIPIF1<0的分布列與期望;(2)設(shè)第SKIPIF1<0次傳球后,甲接到球的概率為SKIPIF1<0,(i)試證明數(shù)列SKIPIF1<0為等比數(shù)列;(ii)解釋隨著傳球次數(shù)的增多,甲接到球的概率趨近于一個常數(shù).例12.(2022·湖南·寧鄉(xiāng)一中高三期中)已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,證明數(shù)列SKIPIF1<0是等比數(shù)列,并求其通項公式;(3)求數(shù)列SKIPIF1<0前10項中所有奇數(shù)項的和.例13.(2022·河南·高三期中(理))已知數(shù)列SKIPIF1<0的各項均不為0,其前SKIPIF1<0項的乘積SKIPIF1<0.(1)若SKIPIF1<0為常數(shù)列,求這個常數(shù);(2)若SKIPIF1<0,設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式.例14.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;例15.(2022·全國·高三專題練習(xí))問題:已知SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,是否存在數(shù)列SKIPIF1<0,滿足SKIPIF1<0,__________﹖若存在.求通項公式SKIPIF1<0﹔若不存在,說明理由.在①SKIPIF1<0﹔②SKIPIF1<0;③SKIPIF1<0這三個條件中任選一個,補充在上面問題中并作答.注:如果選擇多個條件分別解答,按第一個解答計分.核心考點三:等差等比數(shù)列的交匯問題【規(guī)律方法】在解決等差、等比數(shù)列綜合問題時,要充分利用基本公式、性質(zhì)以及它們之間的轉(zhuǎn)化關(guān)系,在求解過程中要樹立“目標(biāo)意識”,“需要什么,就求什么”,并適時地采用“巧用性質(zhì),整體考慮”的方法.可以達(dá)到減少運算量的目的.【典型例題】例16.(2022·河南·一模(理))已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)在SKIPIF1<0和SKIPIF1<0之間插入SKIPIF1<0個數(shù),使這SKIPIF1<0個數(shù)組成一個公差為SKIPIF1<0的等差數(shù)列,在數(shù)列SKIPIF1<0中是否存在SKIPIF1<0項SKIPIF1<0(其中SKIPIF1<0是公差不為SKIPIF1<0的等差數(shù)列)成等比數(shù)列?若存在,求出這SKIPIF1<0項;若不存在,請說明理由.例17.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)判斷數(shù)列SKIPIF1<0中是否存在成等差數(shù)列的三項,并證明你的結(jié)論.例18.(2022·福建省福州華僑中學(xué)高三階段練習(xí))已知在正項等比數(shù)列SKIPIF1<0中SKIPIF1<0成等差數(shù)列,則SKIPIF1<0__________.例19.(2022·湖北·高三期中)已知SKIPIF1<0是等差數(shù)列,SKIPIF1<0是等比數(shù)列,SKIPIF1<0是數(shù)列SKIPIF1<0的前n項和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=______.例20.(2022·河南省淮陽中學(xué)模擬預(yù)測(理))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項利為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,1成等比數(shù)列,且SKIPIF1<0,則SKIPIF1<0的公差SKIPIF1<0的取值范圍為______.例21.(2022·上?!とA東師范大學(xué)第一附屬中學(xué)高三階段練習(xí))已知等差數(shù)列SKIPIF1<0的公差SKIPIF1<0不為零,等比數(shù)列SKIPIF1<0的公比SKIPIF1<0是小于1的正有理數(shù).若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是正整數(shù),則SKIPIF1<0的值可以是______.例22.(2022·貴州·頂效開發(fā)區(qū)頂興學(xué)校高三期中(理))對于集合A,SKIPIF1<0,定義集合SKIPIF1<0.己知等差數(shù)列SKIPIF1<0和正項等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)數(shù)列SKIPIF1<0和SKIPIF1<0中的所有項分別構(gòu)成集合A,SKIPIF1<0,將集合SKIPIF1<0的所有元素按從小到大依次排列構(gòu)成一個新數(shù)列SKIPIF1<0,則數(shù)列SKIPIF1<0的前30項和SKIPIF1<0_________.例23.(2022·全國·模擬預(yù)測(文))設(shè)數(shù)列SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則它們的公共項由小到大排列后組成新數(shù)列SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中插入SKIPIF1<0個數(shù)構(gòu)成一個新數(shù)列SKIPIF1<0:SKIPIF1<0,1,SKIPIF1<0,3,5,SKIPIF1<0,7,9,11,SKIPIF1<0,…,插入的所有數(shù)構(gòu)成首項為1,公差為2的等差數(shù)列,則數(shù)列SKIPIF1<0的前20項和SKIPIF1<0______.核心考點四:數(shù)列的通項公式【規(guī)律方法】常見求解數(shù)列通項公式的方法有如下六種:(1)觀察法:根據(jù)所給的一列數(shù)、式、圖形等,通過觀察法猜想其通項公式.(2)累加法:形如SKIPIF1<0的解析式.(3)累乘法:形如SKIPIF1<0(4)公式法(5)取倒數(shù)法:形如SKIPIF1<0的關(guān)系式(6)構(gòu)造輔助數(shù)列法:通過變換遞推關(guān)系,將非等差(比)數(shù)列構(gòu)造為等差(比)數(shù)列來求通項公式.【典型例題】例24.(2022·上海市南洋模范中學(xué)高三期中)在數(shù)列SKIPIF1<0中.SKIPIF1<0,SKIPIF1<0是其前n項和,當(dāng)SKIPIF1<0時,恒有SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等比數(shù)列,則SKIPIF1<0___________例25.(2022·黑龍江·肇州縣第二中學(xué)高三階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0_____________.例26.(2022·福建·高三階段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.例27.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0______.例28.(2022·全國·高三專題練習(xí))已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________.例29.(2022·全國·高三專題練習(xí))已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.例30.(2022·全國·高三專題練習(xí))設(shè)SKIPIF1<0是首項為1的正項數(shù)列且SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式_________例31.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0___________例32.(2022·全國·高三專題練習(xí))數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項公式為_____________.例33.(2022·全國·高三專題練習(xí))甲、乙兩人各拿兩顆骰子做拋擲游戲,規(guī)則如下:若擲出的點數(shù)之和為3的倍數(shù),原擲骰子的人再繼續(xù)擲;若擲出的點數(shù)之和不是3的倍數(shù),就由對方接著擲.第一次由甲開始擲,則第n次由甲擲的概率SKIPIF1<0______(用含n的式子表示).核心考點五:數(shù)列求和【規(guī)律方法】求數(shù)列前SKIPIF1<0項和SKIPIF1<0的常見方法有以下四種.(1)公式法:利用等差、等比數(shù)列的前SKIPIF1<0項和公式求數(shù)列的前SKIPIF1<0項和.(2)裂項相消法:將數(shù)列恒等變形為連續(xù)兩項或相隔若干項之差的形式,進(jìn)行消項.其方法核心有兩點:一是裂項,將一個式子分裂成兩個式子差的形式;二是要能相消.常見的裂項相消變換有以下形式.①分式裂項:SKIPIF1<0;SKIPIF1<0②根式裂項:SKIPIF1<0;③對數(shù)式裂項SKIPIF1<0;④指數(shù)式裂項(3)錯位相減法(4)分組轉(zhuǎn)化法【典型例題】例34.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,點SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上,函數(shù)SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求SKIPIF1<0的值;(3)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前2020項和SKIPIF1<0.例35.(2022·陜西渭南·一模(理))已知各項均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.各項均為正數(shù)的等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例36.(2022·陜西渭南·一模(文))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,不等式SKIPIF1<0的解集為SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例37.(2022·全國·模擬預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例38.(2022·黑龍江·哈爾濱市第六中學(xué)校高三期中)已知數(shù)列SKIPIF1<0的各項均為正數(shù)的等比數(shù)列,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.例39.(2022·四川省蓬溪縣蓬南中學(xué)高三階段練習(xí))給定數(shù)列SKIPIF1<0,若滿足SKIPIF1<0,對于任意的SKIPIF1<0,都有SKIPIF1<0,則稱SKIPIF1<0為“指數(shù)型數(shù)列”.若數(shù)列SKIPIF1<0滿足:SKIPIF1<0;(1)判斷SKIPIF1<0是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例40.(2022·廣西·南寧市第十九中學(xué)模擬預(yù)測(文))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為正常數(shù)),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例41.(2022·全國·高三專題練習(xí))SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0,記SKIPIF1<0,其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),如SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前2022項和.例42.(2022·云南·昆明一中高三階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.核心考點六:數(shù)列性質(zhì)的綜合問題【典型例題】例43.(2022·全國·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.-15 B.-14 C.-11 D.-6例44.(2022·福建三明·高三期中)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,前SKIPIF1<0項積為SKIPIF1<0,并滿足條件SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0是數(shù)列SKIPIF1<0中的最大值C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0無最大值例45.(2022·廣西·南寧市第十九中學(xué)模擬預(yù)測(文))數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,則數(shù)列SKIPIF1<0中的最大項為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例46.(2022·全國·安陽市第二中學(xué)模擬預(yù)測(文))已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0例47.(2022·山西運城·高三期中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且對于任意的SKIPIF1<0都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例48.(2022·山東聊城·高三期中)若函數(shù)SKIPIF1<0使得數(shù)列SKIPIF1<0,SKIPIF1<0為遞增數(shù)列,則稱函數(shù)SKIPIF1<0為“數(shù)列保增函數(shù)”.已知函數(shù)SKIPIF1<0為“數(shù)列保增函數(shù)”,則a的取值范圍為(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例49.(2022·廣東·執(zhí)信中學(xué)高三階段練習(xí))已知等比數(shù)列SKIPIF1<0的前5項積為32,SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例50.(2022·北京八中高三階段練習(xí))已知數(shù)列SKIPIF1<0是遞增數(shù)列,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例51.(2022·江西·高三階段練習(xí)(理))已知數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項和分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若對于任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點六:實際應(yīng)用中的數(shù)列問題【規(guī)律方法】解數(shù)列應(yīng)用題的一般步驟(1)閱讀理解題意,弄清問題的實際背景,明確已知與未知,理清量與量之間的關(guān)系.(2)根據(jù)題意數(shù)列問題模型.(3)應(yīng)用數(shù)列知識求解.(4)將數(shù)列問題還原為實際問題,注意實際問題中的有關(guān)單位問題、近似計算的要求等.【典型例題】例52.(2022·黑龍江·哈爾濱市劍橋第三高級中學(xué)有限公司高三階段練習(xí))某單位用分期付款方式為職工購買40套住房,總房價1150萬元.約定:2021年7月1日先付款150萬元,以后每月1日都交付50萬元,并加付此前欠款利息,月利率SKIPIF1<0,當(dāng)付清全部房款時,各次付款的總和為(

)A.1205萬元 B.1255萬元 C.1305萬元 D.1360萬元例53.(2022·全國·高三專題練習(xí))在“全面脫貧”行動中,貧困戶小王2020年1月初向銀行借了扶貧免息貸款10000元,用于自己開設(shè)的土特產(chǎn)品加工廠的原材料進(jìn)貨,因產(chǎn)品質(zhì)優(yōu)價廉,上市后供不應(yīng)求,據(jù)測算每月獲得的利潤是該月月初投入資金的20%,每月月底需繳納房租600元和水電費400元.余款作為資金全部用于再進(jìn)貨,如此繼續(xù).設(shè)第n月月底小王手中有現(xiàn)款為SKIPIF1<0,則下列結(jié)論正確的是(

)(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)①SKIPIF1<0②SKIPIF1<0③2020年小王的年利潤約為40000元④兩年后,小王手中現(xiàn)款約達(dá)41萬A.②③④ B.②④ C.①②④ D.②③例54.(2022·全國·高三專題練習(xí))為了更好地解決就業(yè)問題,國家在2020年提出了“地攤經(jīng)濟”為響應(yīng)國家號召,有不少地區(qū)出臺了相關(guān)政策去鼓勵“地攤經(jīng)濟”.老王2020年6月1日向銀行借了免息貸款10000元,用于進(jìn)貨.因質(zhì)優(yōu)價廉,供不應(yīng)求,據(jù)測算:每月獲得的利潤是該月初投入資金的20%,每月底扣除生活費1000元,余款作為資金全部用于下月再進(jìn)貨,如此繼續(xù),預(yù)計到2021年5月底該攤主的年所得收入為(

)(取SKIPIF1<0,SKIPIF1<0)A.32500元 B.40000元 C.42500元 D.50000元例55.(2022·云南昭通·高三階段練習(xí)(文))某病毒研究所為了更好地研究“新冠”病毒,計劃改建十個實驗室,每個實驗室的改建費用分為裝修費和設(shè)備費,每個實驗室的裝修費都一樣,設(shè)備費從第一到第十實驗室依次構(gòu)成等比數(shù)列,已知第五實驗室比第二實驗室的改建費用高28萬元,第七實驗室比第四實驗室的改建費用高112萬元,并要求每個實驗室改建費用不能超過1100萬元.則該研究所改建這十個實驗室投入的總費用最多需要(

)A.2806萬元 B.2906萬元 C.3106萬元 D.3206萬元例56.(2022·全國·高三專題練習(xí))在流行病學(xué)中,基本傳染數(shù)SKIPIF1<0是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).SKIPIF1<0一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.對于SKIPIF1<0,而且死亡率較高的傳染病,一般要隔離感染者,以控制傳染源,切斷傳播途徑.假設(shè)某種傳染病的基本傳染數(shù)SKIPIF1<0,平均感染周期為7天(初始感染者傳染SKIPIF1<0個人為第一輪傳染,經(jīng)過一個周期后這SKIPIF1<0個人每人再傳染SKIPIF1<0個人為第二輪傳染……)那么感染人數(shù)由1個初始感染者增加到1000人大約需要的天數(shù)為(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)(

)A.35 B.42 C.49 D.56核心考點七:以數(shù)列為載體的情境題【規(guī)律方法】1、應(yīng)用數(shù)列知識解決此類問題,關(guān)鍵是列出相關(guān)信息,合理建立數(shù)學(xué)模型——等差、等比數(shù)列模型.2、需要讀懂題目所表達(dá)的具體含義,觀察給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項與求和公式.3、求解時要明確目標(biāo),認(rèn)清是求和、求通項、還是解遞推關(guān)系問題,然后通過數(shù)學(xué)推理與計算得出結(jié)果,并回歸實際問題中,進(jìn)行檢驗,最終得出結(jié)論.【典型例題】例57.(2022·上海市行知中學(xué)高三期中)定義:對于各項均為整數(shù)的數(shù)列SKIPIF1<0,如果SKIPIF1<0(SKIPIF1<0=1,2,3,…)為完全平方數(shù),則稱數(shù)列SKIPIF1<0具有“SKIPIF1<0性質(zhì)”;不論數(shù)列SKIPIF1<0是否具有“SKIPIF1<0性質(zhì)”,如果存在數(shù)列SKIPIF1<0與SKIPIF1<0不是同一數(shù)列,且SKIPIF1<0滿足下面兩個條件:(1)SKIPIF1<0是SKIPIF1<0的一個排列;(2)數(shù)列SKIPIF1<0具有“SKIPIF1<0性質(zhì)”,則稱數(shù)列SKIPIF1<0具有“變換SKIPIF1<0性質(zhì)”.給出下面三個數(shù)列:①數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;②數(shù)列SKIPIF1<0:1,2,3,4,5;③數(shù)列SKIPIF1<0:1,2,3,4,5,6.具有“SKIPIF1<0性質(zhì)”的為________;具有“變換SKIPIF1<0性質(zhì)”的為_________.例58.(2022·江蘇·沭陽縣建陵高級中學(xué)高三階段練習(xí))在數(shù)列的每相鄰兩項之間插入這兩項的和,組成一個新的數(shù)列,這樣的操作叫做這個數(shù)列的一次“拓展”.先將數(shù)列1,2進(jìn)行拓展,第一次拓展得到SKIPIF1<0;第二次拓展得到數(shù)列SKIPIF1<0;第SKIPIF1<0次拓展得到數(shù)列SKIPIF1<0.設(shè)SKIPIF1<0,其中SKIPIF1<0___________,SKIPIF1<0___________.例59.(2022·河北唐山·三模)角谷猜想又稱冰雹猜想,是指任取一個正整數(shù),如果它是奇數(shù),就將它乘以3再加1;如果它是偶數(shù),則將它除以2.反復(fù)進(jìn)行上述兩種運算,經(jīng)過有限次步驟后,必進(jìn)入循環(huán)圈SKIPIF1<0.如取正整數(shù)SKIPIF1<0,根據(jù)上述運算法則得出SKIPIF1<0,共需要經(jīng)過8個步驟變成1(簡稱為8步“雹程”),已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0(m為正整數(shù)),SKIPIF1<0①若SKIPIF1<0,則使得SKIPIF1<0至少需要_______步雹程;②若SKIPIF1<0;則m所有可能取值的和為_______.例60.(2022·全國·華中師大一附中模擬預(yù)測)已知數(shù)列SKIPIF1<0為1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是SKIPIF1<0,接下來的兩項是SKIPIF1<0,SKIPIF1<0,再接下來的三項是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,依此規(guī)律類推.若其前n項和SKIPIF1<0,則稱k為SKIPIF1<0的一個理想數(shù).將SKIPIF1<0的理想數(shù)從小到大依次排成一列,則第二個理想數(shù)是______;當(dāng)SKIPIF1<0的項數(shù)SKIPIF1<0時,其所有理想數(shù)的和為______.例61.(2022·吉林吉林·模擬預(yù)測(文))如果一個數(shù)列從第二項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“SKIPIF1<0數(shù)列”.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項公式SKIPIF1<0___________;若SKIPIF1<0,SKIPIF1<0,且數(shù)列SKIPIF1<0是“SKIPIF1<0數(shù)列”,則t的取值范圍是___________.例62.(2022·全國·模擬預(yù)測)將一條線段三等分后,以中間一段為邊作正三角形并去掉原線段生成1級Koch曲線“”,將1級Koch曲線上每一線段重復(fù)上述步驟得到2級Koch曲線,同理可得3級Koch曲線(如圖1),…,Koch曲線是幾何中最簡單的分形.若一個圖形由N個與它的上一級圖形相似,相似比為r的部分組成,稱SKIPIF1<0為該圖形分形維數(shù),則Koch曲線的分形維數(shù)是________.(精確到0.01,SKIPIF1<0)在第24屆北京冬奧會開幕式上,一朵朵六角雪花(如圖2)飄拂在國家體育場上空,暢想著“一起向未來”的美好愿景.六角雪花曲線是由正三角形的三邊生成的三條1級Koch曲線組成,再將六角雪花曲線每一邊生成一條1級Koch曲線得到2級十八角雪花曲線(如圖3),…,依次得到n級Kn(SKIPIF1<0)角雪花曲線.若正三角形邊長為1,則n級Kn角雪花曲線的周長SKIPIF1<0________.【新題速遞】一、單選題1.(2022·全國·模擬預(yù)測)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則SKIPIF1<0(

)A.0 B.50 C.100 D.25252.(2022·黑龍江·哈爾濱市第六中學(xué)校高三期中)一百零八塔,位于寧夏吳忠青銅峽市,是始建于西夏時期的實心塔群,共分十二階梯式平臺,自上而下一共12層,每層的塔數(shù)均不少于上一層的塔數(shù),總計108座.已知其中10層的塔數(shù)成公差不為零的等差數(shù)列,剩下兩層的塔數(shù)之和為8,則第11層的塔數(shù)為(

)A.17 B.18 C.19 D.203.(2022·江蘇·常熟市中學(xué)高三階段練習(xí))等差數(shù)列SKIPIF1<0各項均為正數(shù),首項與公差相等,SKIPIF1<0,則SKIPIF1<0的值為(

)A.9069 B.9079 C.9089 D.90994.(2022·浙江·紹興市越州中學(xué)高三階段練習(xí))記SKIPIF1<0表示不超過實數(shù)SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·上海市洋涇中學(xué)高三階段練習(xí))設(shè)等比數(shù)列SKIPIF1<0,首項SKIPIF1<0,實系數(shù)一元二次方程SKIPIF1<0的兩根為SKIPIF1<0.若存在唯一的SKIPIF1<0,使得SKIPIF1<0,則公比SKIPIF1<0的取值可能為().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·全國·高三階段練習(xí))已知等差數(shù)列SKIPIF1<0,SKIPIF1<0的前n項和分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·廣西·南寧市第十九中學(xué)模擬預(yù)測(文))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0則滿足SKIPIF1<0的SKIPIF1<0的最小值為(

)A.16 B.15 C.14 D.138.(2022·福建省福州第十一中學(xué)高三期中)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0在SKIPIF1<0上的最大值為S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論