![新高考數(shù)學二輪復習專題講測練專題03 平面向量小題全歸類(精講精練)(原卷版)_第1頁](http://file4.renrendoc.com/view/4f9089c434001c70c2a57df8885f638d/4f9089c434001c70c2a57df8885f638d1.gif)
![新高考數(shù)學二輪復習專題講測練專題03 平面向量小題全歸類(精講精練)(原卷版)_第2頁](http://file4.renrendoc.com/view/4f9089c434001c70c2a57df8885f638d/4f9089c434001c70c2a57df8885f638d2.gif)
![新高考數(shù)學二輪復習專題講測練專題03 平面向量小題全歸類(精講精練)(原卷版)_第3頁](http://file4.renrendoc.com/view/4f9089c434001c70c2a57df8885f638d/4f9089c434001c70c2a57df8885f638d3.gif)
![新高考數(shù)學二輪復習專題講測練專題03 平面向量小題全歸類(精講精練)(原卷版)_第4頁](http://file4.renrendoc.com/view/4f9089c434001c70c2a57df8885f638d/4f9089c434001c70c2a57df8885f638d4.gif)
![新高考數(shù)學二輪復習專題講測練專題03 平面向量小題全歸類(精講精練)(原卷版)_第5頁](http://file4.renrendoc.com/view/4f9089c434001c70c2a57df8885f638d/4f9089c434001c70c2a57df8885f638d5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題03平面向量小題全歸類【命題規(guī)律】平面向量的數(shù)量積、模、夾角是高考考查的重點、熱點,往往以選擇題或填空題的形式出現(xiàn).常常以平面圖形為載體,考查數(shù)量積、夾角、垂直的條件等問題;也易同平面幾何、三角函數(shù)、解析幾何、不等式等知識相結合,以工具的形式出現(xiàn).近幾年高考主要考查平面向量的坐標運算、模的最值、夾角等問題,與三角函數(shù)、解析幾何密切相連,難度為中等.【核心考點目錄】核心考點一:平面向量基本定理及其應用核心考點二:平面向量共線的充要條件及其應用核心考點三:平面向量的數(shù)量積核心考點四:平面向量的模與夾角核心考點五:等和線問題核心考點六:極化恒等式核心考點七:矩形大法核心考點八:平面向量范圍與最值問題【真題回歸】1.已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.62.在SKIPIF1<0中,點D在邊AB上,SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動點,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.在SKIPIF1<0中,SKIPIF1<0,D是AC中點,SKIPIF1<0,試用SKIPIF1<0表示SKIPIF1<0為___________,若SKIPIF1<0,則SKIPIF1<0的最大值為____________【方法技巧與總結】1、平面向量的應用考向主要是平面幾何問題,往往涉及角和距離,轉化成平面向量的夾角、模的問題,總的思路有:(1)坐標法:把幾何圖形放在適當?shù)淖鴺讼抵?,則有關點與向量就可以用坐標表示,這樣就能進行相應的代數(shù)運算和向量運算,從而使問題得到解決.(2)基向量法:適當選取一組基底,溝通向量之間的聯(lián)系,利用向量間的關系構造關于未知量的方程進行求解.2、平面向量中有關范圍最值問題的求解通常有兩種思路:①“形化”,即利用平面向量的幾何意義將問題轉化為平面幾何中的最值或范圍問題,然后根據(jù)平面圖形的特征直接進行判斷;②“數(shù)化”,即利用平面向量的坐標運算,把問題轉化為代數(shù)中的函數(shù)最值與值域、不等式的解集、方程有解等問題,然后利用函數(shù)、不等式、方程的有關知識來解決.【核心考點】核心考點一:平面向量基本定理及其應用【規(guī)律方法】1、應用平面向量基本定理表示向量的實質是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.2、用基底表示某個向量的基本方法:(1)觀察各向量的位置;(2)尋找相應的三角形或多邊形;(3)運用法則找關系;(4)化簡結果.【典型例題】例1.如圖,在SKIPIF1<0中,點D是邊AB上一點且SKIPIF1<0,E是邊BC的中點,直線AE和直線CD交于點F,若BF是SKIPIF1<0的平分線,則SKIPIF1<0(
)A.4 B.3 C.2 D.SKIPIF1<0例2.如圖,在平行四邊形SKIPIF1<0中,點SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0(SKIPIF1<0),若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.4例3.在平行四邊形SKIPIF1<0中,SKIPIF1<0是邊SKIPIF1<0的中點,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例4.如圖,在平行四邊形SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0上的點,且SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0點,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例5.已知平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,點D滿足SKIPIF1<0,E為SKIPIF1<0的外心,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例6.(多選題)如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例7.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為__________.例8.根據(jù)畢達哥拉斯定理,以直角三角形的三條邊為邊長作正方形,從斜邊上作出的正方形的面積正好等于在兩直角邊上作出的正方形面積之和.現(xiàn)在對直角三角形SKIPIF1<0按上述操作作圖后,得如圖所示的圖形,若SKIPIF1<0,則SKIPIF1<0____________.核心考點二:平面向量共線的充要條件及其應用【規(guī)律方法】1、平面向量共線定理:已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0三點共線;反之亦然.2、兩平面向量共線的充要條件有兩種形式:(1)若向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的充要條件是SKIPIF1<0;(2)若SKIPIF1<0,則SKIPIF1<0.【典型例題】例9.已知點SKIPIF1<0是SKIPIF1<0的中線SKIPIF1<0的中點,過點SKIPIF1<0的直線交邊SKIPIF1<0于點SKIPIF1<0,交邊SKIPIF1<0于點SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例10.已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.例11.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為銳角,則實數(shù)SKIPIF1<0的取值范圍為______.例12.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為__________.例13.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0上的點,且SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0是線段SKIPIF1<0上異于端點的一點,且滿足SKIPIF1<0,則SKIPIF1<0_________.例14.如圖,點G為SKIPIF1<0的重心,過點G的直線分別交直線AB,AC點D,E兩點,SKIPIF1<0,SKIPIF1<0,則m+n=______.核心考點三:平面向量的數(shù)量積【規(guī)律方法】1、向量的數(shù)量積:設兩個非零向量SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的數(shù)量積,記作SKIPIF1<0.2、數(shù)量積的幾何意義:數(shù)量積SKIPIF1<0等于SKIPIF1<0的長度SKIPIF1<0與SKIPIF1<0在SKIPIF1<0的方向上的投影SKIPIF1<0的乘積.3、設向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由此得到:(1)若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.(2)設SKIPIF1<0,則A,B兩點間的距離SKIPIF1<0SKIPIF1<0(3)設兩個非零向量SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0(4)若SKIPIF1<0都是非零向量,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的夾角,則SKIPIF1<0【典型例題】例15.已知A,B,C,D在同一平面上,其中SKIPIF1<0,若點B,C,D均在面積為SKIPIF1<0的圓上,則SKIPIF1<0(
)A.36 B.SKIPIF1<0 C.18 D.SKIPIF1<0例16.在SKIPIF1<0中,內(nèi)角SKIPIF1<0所對的邊分別為SKIPIF1<0,且SKIPIF1<0,點SKIPIF1<0為外心,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.10 D.20例17.已知菱形SKIPIF1<0的邊長為2,SKIPIF1<0,SKIPIF1<0是菱形SKIPIF1<0內(nèi)一點,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2例18.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0垂直平分線SKIPIF1<0上任一異于SKIPIF1<0的點,則SKIPIF1<0(
)A.SKIPIF1<0 B.4 C.7 D.SKIPIF1<0例19.已知SKIPIF1<0的外接圓的圓心為SKIPIF1<0,半徑為1,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0核心考點四:平面向量的模與夾角【規(guī)律方法】(1)向量的夾角要求向量“共起點”,其范圍為SKIPIF1<0.(2)求非零向量SKIPIF1<0的夾角一般利用公式SKIPIF1<0先求出夾角的余弦值,然后求夾角.也可以構造三角形,將所求夾角轉化為三角形的內(nèi)角求解,更為直觀形象.【典型例題】例20.設SKIPIF1<0,SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角等于(
)A.30° B.60° C.120° D.150°例21.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且對任意實數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,設SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例22.已知向量SKIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0,且SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例23.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<0例24.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例25.已知SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4核心考點五:等和線問題【規(guī)律方法】等和線平面內(nèi)一組基底SKIPIF1<0及任一向量SKIPIF1<0,SKIPIF1<0,若點SKIPIF1<0在直線SKIPIF1<0上或者在平行于SKIPIF1<0的直線上,則SKIPIF1<0(定值),反之也成立,我們把直線SKIPIF1<0以及與直線SKIPIF1<0平行的直線稱為等和線.①當?shù)群途€恰為直線SKIPIF1<0時,SKIPIF1<0;②當?shù)群途€在SKIPIF1<0點和直線SKIPIF1<0之間時,SKIPIF1<0;③當直線SKIPIF1<0在點SKIPIF1<0和等和線之間時,SKIPIF1<0;④當?shù)群途€過SKIPIF1<0點時,SKIPIF1<0;⑤若兩等和線關于SKIPIF1<0點對稱,則定值SKIPIF1<0互為相反數(shù);【典型例題】例26.在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0上的動點,且滿足SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.48 B.49 C.50 D.51例27.如圖,邊長為2的等邊三角形的外接圓為圓SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上任一點,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.1例28.在SKIPIF1<0中,M為BC邊上任意一點,N為線段AM上任意一點,若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例29.如圖,已知點SKIPIF1<0在由射線SKIPIF1<0、線段SKIPIF1<0,線段SKIPIF1<0的延長線所圍成的平面區(qū)域內(nèi)(包括邊界),且SKIPIF1<0與SKIPIF1<0平行,若SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點六:極化恒等式【規(guī)律方法】極化恒等式(1)平行四邊形平行四邊形對角線的平方和等于四邊的平方和:SKIPIF1<0證明:不妨設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0①SKIPIF1<0②①②兩式相加得:SKIPIF1<0(2)極化恒等式:上面兩式相減,得:SKIPIF1<0————極化恒等式①平行四邊形模式:SKIPIF1<0幾何意義:向量的數(shù)量積可以表示為以這組向量為鄰邊的平行四邊形的“和對角線”與“差對角線”平方差的SKIPIF1<0.②三角形模式:SKIPIF1<0(M為BD的中點)AABCM【典型例題】例30.邊長為SKIPIF1<0的正方形內(nèi)有一內(nèi)切圓,SKIPIF1<0是內(nèi)切圓的一條弦,點SKIPIF1<0為正方形四條邊上的動點,當弦SKIPIF1<0的長度最大時,SKIPIF1<0的取值范圍是_________.例31.如圖直角梯形ABCD中,EF是CD邊上長為6的可移動的線段,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為________________.
例32.設三角形ABC,P0是邊AB上的一定點,滿足P0B=SKIPIF1<0AB,且對于邊AB上任一點P,恒有SKIPIF1<0,則三角形ABC形狀為___________.例33.)已知直線SKIPIF1<0與圓SKIPIF1<0相切于點SKIPIF1<0,設直線SKIPIF1<0與SKIPIF1<0軸的交點為SKIPIF1<0,點SKIPIF1<0為圓SKIPIF1<0上的動點,則SKIPIF1<0的最大值為______.核心考點七:矩形大法【規(guī)律方法】矩形所在平面內(nèi)任一點到其對角線端點距離的平方和相等已知點O是矩形ABCD與所在平面內(nèi)任一點,證明:SKIPIF1<0.【典型例題】例34.已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例35.設向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1例36.已知SKIPIF1<0為單位向量,向量SKIPIF1<0滿足:SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點八:平面向量范圍與最值問題【規(guī)律方法】平面向量范圍與最值問題常用方法:(1)定義法第一步:利用向量的概念及其基本運算將所求問題轉化為相應的等式關系第二步:運用基木不等式求其最值問題第三步:得出結論(2)坐標法第一步:根據(jù)題意建立適當?shù)闹苯亲鴺讼挡懗鱿鄳c的坐標第二步:將平面向量的運算坐標化第三步:運用適當?shù)臄?shù)學方法如二次函數(shù)的思想、基本不等式的思想、三角函數(shù)思想等求解(3)基底法第一步:利用其底轉化向量第二步:根據(jù)向量運算律化簡目標第三步:運用適當?shù)臄?shù)學方法如二次函數(shù)的思想、基本不等式的思想、三角函數(shù)思想等得出結論(4)幾何意義法第一步:先確定向量所表達的點的軌跡第二步:根據(jù)直線與曲線位置關系列式第三步:解得結果【典型例題】例37.已知在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0位于線段SKIPIF1<0上,當SKIPIF1<0取得最小值時,向量SKIPIF1<0與SKIPIF1<0的夾角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例38.已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是________.例39.已知等邊△ABC的內(nèi)接于圓SKIPIF1<0,點P是圓O上一點,則SKIPIF1<0的最大值是______.例40.已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為______.例41.如圖,在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上的動點,則SKIPIF1<0的最小值為__________.【新題速遞】一、單選題1.如圖,在矩形ABCD中,SKIPIF1<0,E為邊AB上的任意一點(包含端點),O為AC的中點,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知SKIPIF1<0為坐標原點,拋物線SKIPIF1<0:SKIPIF1<0.過點SKIPIF1<0(SKIPIF1<0)的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影為(
)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<04.已知SKIPIF1<0,點P滿足SKIPIF1<0,動點M,N滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.3 B.SKIPIF1<0 C.4 D.SKIPIF1<05.如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角SKIPIF1<0的斜邊SKIPIF1<0,直角邊SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,E為半圓SKIPIF1<0弧的中點,F(xiàn)為半圓SKIPIF1<0弧上的任一點,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.46.如圖所示,已知圓O的半徑為5,SKIPIF1<0,圓O上有一點B滿足SKIPIF1<0,點C為圓O上任意一點,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.)如圖,在SKIPIF1<0中,O為線段BC上一點,且SKIPIF1<0,G為線段AO的中點,過點G的直線分別交直線AB,AC于D,E兩點,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.28.如圖所示,平行四邊形SKIPIF1<0的對角線相交于點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0等于(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.已知平面向量SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0C.與SKIPIF1<0垂直的單位向量的坐標為SKIPIF1<0 D.若向量SKIPIF1<0與向量SKIPIF1<0共線,則SKIPIF1<010.已知扇形AOB的半徑為1,SKIPIF1<0,點C在弧AB上運動,SKIPIF1<0,下列說法正確的有(
)A.當C位于A點時,SKIPIF1<0的值最小 B.當C位于B點時,SKIPIF1<0的值最大C.SKIPIF1<0的取值范圍為SKIPIF1<0 D.SKIPIF1<0的取值范圍SKIPIF1<011.已知向量SKIPIF1<0,則下列命題正確的是(
)A.SKIPIF1<0的最大值為SKIPIF1<0B.存在SKIPIF1<0,使得SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<012.如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版部編歷史七年級下冊《第8課 金與南宋的對峙》聽課評課記錄2
- 魯教版地理六年級下冊6.1《位置和范圍》聽課評課記錄1
- 青島版數(shù)學七年級下冊11.2《積的乘方與冪的乘方(1)》聽評課記錄
- 【人教版 七年級數(shù)學 上冊 第一章】1.3.2 第2課時《 有理數(shù)加減混合運算》聽評課記錄2
- 部編版八年級道德與法治上冊聽課評課記錄《2.2合理利用網(wǎng)絡》
- 華師大版數(shù)學七年級上冊《綜合與實踐 制作包裝盒》聽評課記錄
- 人民版道德與法治九年級下冊第七課《我們的文化自信》聽課評課記錄
- 六年級思想品德教學總結
- 醫(yī)院醫(yī)生聘用合同范本
- 城市個人財產(chǎn)房屋抵押貸款合同范本
- 【大學課件】機電設備管理技術概論
- (2024)甘肅省公務員考試《行測》真題及答案解析
- 《STP營銷戰(zhàn)略概述》課件
- 醫(yī)院醫(yī)務人員醫(yī)德考評標準
- 急性胸痛患者的急救護理
- 小紅書種草營銷師(初級)認證考試真題試題庫(含答案)
- 癲癇病人的護理(課件)
- 企業(yè)資產(chǎn)管理培訓
- 2024年WPS計算機二級考試題庫350題(含答案)
- 自然辯證法學習通超星期末考試答案章節(jié)答案2024年
- 2024年4月27日浙江省事業(yè)單位招聘《職業(yè)能力傾向測驗》試題
評論
0/150
提交評論