2022-2023學年新疆烏魯木齊市中考聯(lián)考數(shù)學試題含解析_第1頁
2022-2023學年新疆烏魯木齊市中考聯(lián)考數(shù)學試題含解析_第2頁
2022-2023學年新疆烏魯木齊市中考聯(lián)考數(shù)學試題含解析_第3頁
2022-2023學年新疆烏魯木齊市中考聯(lián)考數(shù)學試題含解析_第4頁
2022-2023學年新疆烏魯木齊市中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若函數(shù)y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>52.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

)A.9分B.8分C.7分D.6分3.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.4.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a65.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)6.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形7.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確8.已知二次函數(shù)y=(x+a)(x﹣a﹣1),點P(x0,m),點Q(1,n)都在該函數(shù)圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<19.數(shù)據3、6、7、1、7、2、9的中位數(shù)和眾數(shù)分別是()A.1和7 B.1和9 C.6和7 D.6和910.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,二、填空題(共7小題,每小題3分,滿分21分)11.已知圓錐的底面半徑為3cm,側面積為15πcm2,則這個圓錐的側面展開圖的圓心角°.12.將161000用科學記數(shù)法表示為1.61×10n,則n的值為________.13.小青在八年級上學期的數(shù)學成績如下表所示.平時測驗期中考試期末考試成績869081如果學期總評成績根據如圖所示的權重計算,小青該學期的總評成績是_____分.14.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。15.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.16.一副直角三角板疊放如圖所示,現(xiàn)將含45°角的三角板固定不動,把含30°角的三角板繞直角頂點沿逆時針方向勻速旋轉一周,第一秒旋轉5°,第二秒旋轉10°,第三秒旋轉5°,第四秒旋轉10°,…按此規(guī)律,當兩塊三角板的斜邊平行時,則三角板旋轉運動的時間為_____.17.若函數(shù)y=m-2x三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系中,二次函數(shù)y=x2+ax+2a+1的圖象經過點M(2,-3)。(1)求二次函數(shù)的表達式;(2)若一次函數(shù)y=kx+b(k≠0)的圖象與二次函數(shù)y=x2+ax+2a+1的圖象經過x軸上同一點,探究實數(shù)k,b滿足的關系式;(3)將二次函數(shù)y=x2+ax+2a+1的圖象向右平移2個單位,若點P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結合圖象求x0的取值范圍.19.(5分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.20.(8分)某校初三進行了第三次模擬考試,該校領導為了了解學生的數(shù)學考試情況,抽樣調查了部分學生的數(shù)學成績,并將抽樣的數(shù)據進行了如下整理.(1)填空_______,_______,數(shù)學成績的中位數(shù)所在的等級_________.(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數(shù);(3)已知抽樣調查學生的數(shù)學成績平均分為102分,求A級學生的數(shù)學成績的平均分數(shù).①如下分數(shù)段整理樣本等級等級分數(shù)段各組總分人數(shù)48435741712②根據上表繪制扇形統(tǒng)計圖21.(10分)先化簡,再求值:(+)÷,其中x=22.(10分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.23.(12分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.24.(14分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是_____度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在_____等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.2、C【解析】分析:根據中位數(shù)的定義,首先將這組數(shù)據按從小到大的順序排列起來,由于這組數(shù)據共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關鍵是掌握中位數(shù)的定義:將一組數(shù)據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù).如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).3、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.4、B【解析】

根據整式的運算法則分別計算可得出結論.【詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.5、A【解析】

分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.6、D【解析】分析:根據軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.7、A【解析】

根據題意先畫出相應的圖形,然后進行推理論證即可得出結論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規(guī)作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.8、D【解析】分析:先求出二次函數(shù)的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數(shù)y=(x+a)(x﹣a﹣1),當y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當P在對稱軸的左側(含頂點)時,y隨x的增大而減小,由m<n,得:0<x0≤;當P在對稱軸的右側時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,解決本題的關鍵是利用二次函數(shù)的性質,要分類討論,以防遺漏.9、C【解析】

如果一組數(shù)據有奇數(shù)個,那么把這組數(shù)據從小到大排列后,排在中間位置的數(shù)是這組數(shù)據的中位數(shù);如果一組數(shù)據有偶數(shù)個,那么把這組數(shù)據從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據的中位數(shù).一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做眾數(shù).【詳解】解:∵7出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數(shù)是6,∴中位數(shù)是6故選C.【點睛】本題考查了中位數(shù)和眾數(shù)的求法,解答本題的關鍵是熟練掌握中位數(shù)和眾數(shù)的定義.10、D【解析】

根據三角形三邊關系可知,不能構成三角形,依此即可作出判定;

B、根據勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構成三角形,故選項錯誤;

B、∵12+12=()2,是等腰直角三角形,故選項錯誤;

C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;

D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.

故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:根據圓錐的側面積公式S=πrl得出圓錐的母線長,再結合扇形面積即可求出圓心角的度數(shù).解:∵側面積為15πcm2,∴圓錐側面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.12、5【解析】

【科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.13、84.2【解析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.14、4:7或2:5【解析】

根據E在CD上和CD的延長線上,運用相似三角形分類討論即可.【詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【點睛】本題以矩形為載體,考查了相似三角形的性質,解題的關鍵在于根據圖形分類討論,即數(shù)形結合的靈活應用.15、【解析】

直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.16、14s或38s.【解析】試題解析:分兩種情況進行討論:如圖:旋轉的度數(shù)為:每兩秒旋轉如圖:旋轉的度數(shù)為:每兩秒旋轉故答案為14s或38s.17、m>2【解析】試題分析:有函數(shù)y=m考點:反比例函數(shù)的性質.三、解答題(共7小題,滿分69分)18、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】

(1)將點M坐標代入y=x2+ax+2a+1,求出a的值,進而可得到二次函數(shù)表達式;(2)先求出拋物線與x軸的交點,將交點代入一次函數(shù)解析式,即可得到k,b滿足的關系;(3)先求出平移后的新拋物線的解析式,確定新拋物線的對稱軸以及Q的對稱點Q′,根據m>n結合圖像即可得到x0的取值范圍.【詳解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函數(shù)的表達式為:y=x2-2x-3;(2)y=x2-2x-3與x軸的交點是:(3,0),(-1,0).當y=kx+b(k≠0)經過(3,0)時,3k+b=0;當y=kx+b(k≠0)經過(-1,0)時,k=b.(3)將二次函數(shù)y=x2-2x-3的圖象向右平移2個單位得到y(tǒng)=x2-6x+5,對稱軸是直線x=3,因此Q(2,n)在圖象上的對稱點是(1,n),若點P(x0,m)使得m>n,結合圖象可以得出x0<2或x0>1.【點睛】本題主要考查二次函數(shù)的圖像和性質,熟練掌握這些知識點是解題的關鍵.19、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質,正確應用等腰直角三角形的性質是解題關鍵.20、(1)6;8;B;(2)120人;(3)113分.【解析】

(1)根據表格中的數(shù)據和扇形統(tǒng)計圖中的數(shù)據可以求得本次抽查的人數(shù),從而可以得到m、n的值,從而可以得到數(shù)學成績的中位數(shù)所在的等級;

(2)根據表格中的數(shù)據可以求得D等級的人數(shù);

(3)根據表格中的數(shù)據,可以計算出A等級學生的數(shù)學成績的平均分數(shù).【詳解】(1)本次抽查的學生有:(人),

數(shù)學成績的中位數(shù)所在的等級B,

故答案為:6,11,B;

(2)120(人),

答:D等級的約有120人;

(3)由表可得,

A等級學生的數(shù)學成績的平均分數(shù):(分),

即A等級學生的數(shù)學成績的平均分是113分.【點睛】本題考查了扇形統(tǒng)計圖、中位數(shù)、加權平均數(shù),解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.21、-【解析】

先根據分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【點睛】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.22、(1)∠AED=∠C,理由見解析;(2)【解析】

(1)根據切線的性質和圓周角定理解答即可;(2)根據勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論