252圓的切線的判定性質和畫法導學案_第1頁
252圓的切線的判定性質和畫法導學案_第2頁
252圓的切線的判定性質和畫法導學案_第3頁
252圓的切線的判定性質和畫法導學案_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

圓的切線的判斷、性質和畫法導教學設計【學習目標】1、研究圓的切線的判判定理,并掌握圓的切線的判判定理;2、會利用切線的判判定理證明直線是圓的切線,并初步掌握切線證明問題中輔助線的增加方法?!緦W習過程】一、課前抽測1、直線與圓的地址關系有:

、

三種。2、與圓相切的直線叫

線,與圓

個交點,這個交點叫

點。3、已知⊙

O的直徑為

6cm,若是圓心

O到直線

l

的距離為

3cm,則直線

l

與⊙

O

的地址關系是

。二、問題研究研究一:切線的判判定理例1:已知:如圖,AB是⊙O的直徑,D是BC弧的中點,DE⊥AC,交AC的延長線于E,求證:DE是⊙O的切線。學法指導:切線的判斷方法:(1)若切點已知,則連半徑,證垂直;(2)若切點未知,則作垂直(過圓心作線段垂直直線),證半徑(證明垂線段的長度等于半徑)。研究二:切線的性質例2:已知:如圖,AB切⊙O于點B,OA與⊙O交于點C,點P在⊙O上,若∠BAC=40°,則∠BPC的度數(shù)為()20°25°30°40°學法指導:切線的性質:若是出現(xiàn)圓的切線,則平時連接圓心和切點(作半徑),得垂直。簡稱“見切點,連半徑,得垂直”三、知識歸納1、切線的判斷方法:經過半徑的

并且

于這條半徑的直線是圓的切線。如圖

1所示,⊙

O的半徑

OA=2cm,過點

A作直線

l

與OA垂直。⑴圓心

O到直線

l

的垂線段是

;⑵圓心

O到直線

l

的距離等于

cm;⑶直線

l與⊙O的地址關系是

,直線

l是⊙O的

線。2、切線的性質:圓的切線

半徑。四、課堂檢測1、以下命題中是真命題的是()A、經過半徑外端的直線是圓的切線B、直線和圓有公共點,則直線和圓訂交C、圓的切線垂直于半徑D、過圓上一點有且只有一條直線與圓相切2、如圖,AB是⊙O的直徑,以下條件中不能夠判斷直線AT是⊙O的切線的是()AB=4,AT=3,BT=5∠B=45°,AB=AT∠B=55°,∠TAC=55°∠ATC=∠B3、以下列圖,AB是⊙O的弦,AC是⊙O的切線,A為切點,BC經過圓心。若∠B=20°,則∠C的大小等于()。A、20°B、25°C、40°D、50°4、已知:如圖6所示,AB是⊙O的直徑,點D在AB的延長線上,AC=CD,點C在⊙O上,∠CAB=30°。求證:DC是⊙O的切線。CAOBD5、已知:以下列圖,AB為⊙O的直徑,C為⊙O上一點,直線MN經過點C,AD⊥MN于D,且AC平分∠BAD。求證:MN與⊙O相切。MDCNABO五、課后作業(yè)1、如圖,點O是∠BAC的邊AC上的一點,⊙O與邊點P是⊙O上一點,且∠EPD=35°,則∠BAC的度數(shù)為A.20°B.35°C.55°D.70°

AB(

相切于點)

D,

與線段

AO

訂交于點

E,

若2、如圖,AB是⊙O的切線,B為切點,AO的延長線交⊙O于C點,連接BC,若∠A=30°,AB=23,則AC等于。3、已知:以下列圖,AB是⊙O的直徑,P是⊙O外一點,PA⊥AB,弦BC∥OP。求證:PC為⊙O的切線。PCBAO4、已知:以下列圖,P是∠AOB的角均分線OC上一點,PE⊥OA于E。以P點為圓心,PE長為半徑作⊙P。求證:OB與⊙P相切。5、以下列圖,⊙O的直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論