版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.4.國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%5.已知函數(shù),為的零點(diǎn),為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.6.已知,且,則在方向上的投影為()A. B. C. D.7.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.48.點(diǎn)為不等式組所表示的平面區(qū)域上的動(dòng)點(diǎn),則的取值范圍是()A. B. C. D.9.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.10.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-311.過點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或12.已知雙曲線的左右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線在第二象限的交點(diǎn)為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.14.在區(qū)間內(nèi)任意取一個(gè)數(shù),則恰好為非負(fù)數(shù)的概率是________.15.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.16.若橢圓:的一個(gè)焦點(diǎn)坐標(biāo)為,則的長軸長為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.18.(12分)設(shè)數(shù)列,其前項(xiàng)和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前n項(xiàng)和,并求證:.19.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.20.(12分)已知,且的解集為.(1)求實(shí)數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實(shí)數(shù)取值范圍.21.(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求22.(10分)如圖,三棱臺(tái)的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)等比數(shù)列的前項(xiàng)和公式,判斷出正確選項(xiàng).【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.2、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.3、B【解析】
模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.4、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.6、C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)椋裕试诜较蛏系耐队盀椋蔬x:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.7、B【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點(diǎn),即時(shí),有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.8、B【解析】
作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動(dòng)點(diǎn)到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.9、A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時(shí),得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時(shí),函數(shù)取得最小值,當(dāng)時(shí),;當(dāng)時(shí),,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.10、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-211、A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.12、B【解析】
先設(shè)直線與圓相切于點(diǎn),根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點(diǎn),因?yàn)槭且詧A的直徑為斜邊的圓內(nèi)接三角形,所以,又因?yàn)閳A與直線的切點(diǎn)為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點(diǎn)睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.14、【解析】
先分析非負(fù)數(shù)對應(yīng)的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負(fù)數(shù)”的概率.【詳解】當(dāng)是非負(fù)數(shù)時(shí),,區(qū)間長度是,又因?yàn)閷?yīng)的區(qū)間長度是,所以“恰好為非負(fù)數(shù)”的概率是.故答案為:.【點(diǎn)睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標(biāo)事件對應(yīng)的區(qū)間長度.15、【解析】
由于,則.16、【解析】
由焦點(diǎn)坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因?yàn)橐粋€(gè)焦點(diǎn)坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯(cuò)點(diǎn)是忽略,從而未對的兩個(gè)值進(jìn)行取舍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)?,所以,,,或,或,因?yàn)椋运裕唬á颍┯捎嘞叶ɡ淼茫?,所以,所以,?dāng)且僅當(dāng)取等號,又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1),;(2)詳見解析.【解析】
(1)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)19、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時(shí).則其外接球的半徑為.因?yàn)闀r(shí)邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因?yàn)?,所以為的中點(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因?yàn)槠矫?,所以平?(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時(shí),的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個(gè)法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時(shí),平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.20、(1),;(2)【解析】
(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點(diǎn)的坐標(biāo),通過分割法將四邊形的面積分為兩個(gè)三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點(diǎn)向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點(diǎn)睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應(yīng)用,屬于中檔題.21、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計(jì)算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數(shù)f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當(dāng)x≤a時(shí),f(x)=a﹣x+a﹣1x=1a﹣3x,則f(x)≥﹣a;當(dāng)a<x<時(shí),f(x)=x﹣a+a﹣1x=﹣x,則﹣<f(x)<﹣a;當(dāng)x時(shí),f(x)=x﹣a+1x﹣a=3x﹣1a,則f(x)≥﹣.則f(x)的值域?yàn)閇﹣,+∞).不等式f(x)+f(1x)<的解集非空,即為>﹣,解得,a>﹣1,由于a<2,則a的取值范圍是(-1,0).考點(diǎn):1.含絕對值不等式的證明與解法.1.基本不等式.22、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)取的中點(diǎn)為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點(diǎn),可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工合同范本2025年
- 個(gè)人之間房屋買賣合同范本(2025年)
- 收購公司保密協(xié)議書范本(2025年)
- 租賃合同范本籃球場租賃合同(2025年)
- 2025年度戶外燒烤活動(dòng)組織與供應(yīng)合同3篇
- 2025年度時(shí)尚雜志攝影師長期聘用合同書3篇
- 合伙人合同協(xié)議書(2025年)
- 2025年度水電工勞務(wù)分包合同(農(nóng)業(yè)灌溉水電設(shè)施)3篇
- 2025年度旅游設(shè)施租賃服務(wù)合同范本2篇
- 2025年度橋梁工程混凝土勞務(wù)合作合同3篇
- 口腔正畸科普課件
- 2024年廣東省普通高中學(xué)業(yè)水平合格性地理試卷(1月份)
- 住宅樓安全性檢測鑒定方案
- 配送管理招聘面試題與參考回答2024年
- 江蘇省語文小學(xué)三年級上學(xué)期期末試題及解答參考(2024年)
- 黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2025屆數(shù)學(xué)高一上期末監(jiān)測試題含解析
- 小學(xué)一年級數(shù)學(xué)思維訓(xùn)練100題(附答案)
- 安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)方案(一般工貿(mào)) 2024
- 2024年廣東省廣州市黃埔區(qū)中考一模語文試題及答案
- 飯?zhí)脪炜繀f(xié)議合同范本
- 2023-2024學(xué)年遼寧省重點(diǎn)高中沈陽市郊聯(lián)體高二上學(xué)期期末考試生物試題(解析版)
評論
0/150
提交評論