版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
MachineLearning:
findingpatternsOutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka2FindingpatternsGoal:programsthatdetectpatternsandregularitiesinthedataStrongpatternsgoodpredictionsProblem1:mostpatternsarenotinterestingProblem2:patternsmaybeinexact(or spurious)Problem3:datamaybegarbledormissing3MachinelearningtechniquesAlgorithmsforacquiringstructuraldescriptionsfromexamplesStructuraldescriptionsrepresentpatternsexplicitlyCanbeusedtopredictoutcomeinnewsituationCanbeusedtounderstandandexplainhowpredictionisderived
(maybeevenmoreimportant)Methodsoriginatefromartificialintelligence,statistics,andresearchondatabaseswitten&eibe4Canmachinesreallylearn?Definitionsof“l(fā)earning”fromdictionary:Togetknowledgeofbystudy,
experience,orbeingtaughtTobecomeawarebyinformationor
fromobservationTocommittomemoryTobeinformedof,ascertain;toreceiveinstructionDifficulttomeasureTrivialforcomputersThingslearnwhentheychangetheirbehaviorinawaythatmakesthemperformbetterinthefuture.Operationaldefinition:Doesaslipperlearn?Doeslearningimplyintention?witten&eibe5ClassificationLearnamethodforpredictingtheinstanceclassfrompre-labeled(classified)instancesManyapproaches:Regression,DecisionTrees,Bayesian,NeuralNetworks,...Givenasetofpointsfromclasseswhatistheclassofnewpoint?6Classification:LinearRegressionLinearRegressionw0+w1x+w2y>=0Regressioncomputeswifromdatatominimizesquarederrorto‘fit’thedataNotflexibleenough7Classification:DecisionTreesXYifX>5thenblueelseifY>3thenblueelseifX>2thengreenelseblue5238Classification:NeuralNetsCanselectmorecomplexregionsCanbemoreaccurateAlsocanoverfitthedata–findpatternsinrandomnoise9OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka10TheweatherproblemOutlookTemperatureHumidityWindyPlaysunnyhothighfalsenosunnyhothightruenoovercasthothighfalseyesrainymildhighfalseyesrainymildnormalfalseyesrainymildnormaltruenoovercastmildnormaltrueyessunnymildhighfalsenosunnymildnormalfalseyesrainymildnormalfalseyessunnymildnormaltrueyesovercastmildhightrueyesovercasthotnormalfalseyesrainymildhightruenoGivenpastdata,CanyoucomeupwiththerulesforPlay/NotPlay?Whatisthegame?11The
weatherproblemGiventhisdata,whataretherulesforplay/notplay?OutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………12The
weatherproblemConditionsforplayingOutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………Ifoutlook=sunnyandhumidity=highthenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity=normalthenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe13WeatherdatawithmixedattributesOutlookTemperatureHumidityWindyPlaysunny8585falsenosunny8090truenoovercast8386falseyesrainy7096falseyesrainy6880falseyesrainy6570truenoovercast6465trueyessunny7295falsenosunny6970falseyesrainy7580falseyessunny7570trueyesovercast7290trueyesovercast8175falseyesrainy7191trueno14WeatherdatawithmixedattributesHowwilltheruleschangewhensomeattributeshavenumericvalues?OutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………15WeatherdatawithmixedattributesRuleswithmixedattributesOutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………Ifoutlook=sunnyandhumidity>83thenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity<85thenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe16ThecontactlensesdataAgeSpectacleprescriptionAstigmatismTearproductionrateRecommendedlensesYoungMyopeNoReducedNoneYoungMyopeNoNormalSoftYoungMyopeYesReducedNoneYoungMyopeYesNormalHardYoungHypermetropeNoReducedNoneYoungHypermetropeNoNormalSoftYoungHypermetropeYesReducedNoneYoungHypermetropeYesNormalhardPre-presbyopicMyopeNoReducedNonePre-presbyopicMyopeNoNormalSoftPre-presbyopicMyopeYesReducedNonePre-presbyopicMyopeYesNormalHardPre-presbyopicHypermetropeNoReducedNonePre-presbyopicHypermetropeNoNormalSoftPre-presbyopicHypermetropeYesReducedNonePre-presbyopicHypermetropeYesNormalNonePresbyopicMyopeNoReducedNonePresbyopicMyopeNoNormalNonePresbyopicMyopeYesReducedNonePresbyopicMyopeYesNormalHardPresbyopicHypermetropeNoReducedNonePresbyopicHypermetropeNoNormalSoftPresbyopicHypermetropeYesReducedNonePresbyopicHypermetropeYesNormalNonewitten&eibe17AcompleteandcorrectrulesetIftearproductionrate=reducedthenrecommendation=noneIfage=youngandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=pre-presbyopicandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=presbyopicandspectacleprescription=myope
andastigmatic=nothenrecommendation=noneIfspectacleprescription=hypermetropeandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfspectacleprescription=myopeandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfageyoungandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfage=pre-presbyopic
andspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=noneIfage=presbyopicandspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=nonewitten&eibe18Adecisiontreeforthisproblemwitten&eibe19ClassifyingirisflowersSepallengthSepalwidthPetallengthPetalwidthType0.2Irissetosa24.93.01.40.2Irissetosa…517.0Irisversicolor51.5Irisversicolor…102.5Irisvirginica101.9Irisvirginica…Ifpetallength<2.45thenIrissetosaIfsepalwidth<2.10thenIrisversicolor...witten&eibe20Example:209differentcomputerconfigurationsLinearregressionfunctionPredictingCPUperformanceCycletime(ns)Mainmemory(Kb)Cache(Kb)ChannelsPerformanceMYCTMMINMMAXCACHCHMINCHMAXPRP112525660002561612819822980003200032832269…20848051280003200672094801000400000045PRP= -55.9+0.0489MYCT+0.0153MMIN+0.0056MMAX
+0.6410CACH-0.2700CHMIN+1.480CHMAXwitten&eibe21SoybeanclassificationAttributeNumberofvaluesSamplevalueEnvironmentTimeofoccurrence7JulyPrecipitation3Abovenormal…SeedCondition2NormalMoldgrowth2Absent…FruitConditionoffruitpods4NormalFruitspots5?LeavesCondition2AbnormalLeafspotsize3?…StemCondition2AbnormalStemlodging2Yes…RootsCondition3NormalDiagnosis19Diaporthestemcankerwitten&eibe22TheroleofdomainknowledgeIfleafconditionisnormal
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotIfleafmalformationisabsent
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotButinthisdomain,“l(fā)eafconditionisnormal”implies
“l(fā)eafmalformationisabsent”!witten&eibe23OutlineMachinelearningandClassificationExamples*LearningasSearch
BiasWeka24LearningassearchInductivelearning:findaconceptdescriptionthatfitsthedataExample:rulesetsasdescriptionlanguageEnormous,butfinite,searchspaceSimplesolution:enumeratetheconceptspaceeliminatedescriptionsthatdonotfitexamplessurvivingdescriptionscontaintargetconceptwitten&eibe25EnumeratingtheconceptspaceSearchspaceforweatherproblem4x4x3x3x2=288possiblecombinationsWith14rules2.7x1034possiblerulesetsSolution:candidate-eliminationalgorithmOtherpracticalproblems:MorethanonedescriptionmaysurviveNodescriptionmaysurviveLanguageisunabletodescribetargetconceptordatacontainsnoisewitten&eibe26TheversionspaceSpaceofconsistentconceptdescriptionsCompletelydeterminedbytwosetsL:mostspecificdescriptionsthatcoverallpositiveexamplesandnonegativeonesG:mostgeneraldescriptionsthatdonotcoveranynegativeexamplesandallpositiveonesOnlyLandGneedbemaintainedandupdatedBut:stillcomputationallyveryexpensiveAnd:doesnotsolveotherpracticalproblemswitten&eibe27*Versionspaceexample,1Given:redorgreencowsorchicken
Startwith: L={} G={<*,*>}Firstexample:<green,cow>:positive
HowdoesthischangeLandG?witten&eibe28*Versionspaceexample,2Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<*,*>}Secondexample:<red,chicken>:negativewitten&eibe29*Versionspaceexample,3Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<green,*>,<*,cow>}Finalexample:<green,chicken>:positive
witten&eibe30*Versionspaceexample,4Given:redorgreencowsorchicken
Resultantversionspace: L={<green,*>} G={<green,*>}witten&eibe31*Versionspaceexample,5Given:redorgreencowsorchicken
L={} G={<*,*>}<green,cow>:positive L={<green,cow>} G={<*,*>}<red,chicken>:negative L={<green,cow>} G={<green,*>,<*,cow>}<green,chicken>:positive L={<green,*>} G={<green,*>}witten&eibe32*Candidate-eliminationalgorithmInitializeLandGForeachexamplee: Ifeispositive: DeleteallelementsfromGthatdonotcovere
ForeachelementrinLthatdoesnotcovere: Replacerbyallofitsmostspecificgeneralizations
that 1.covereand 2.aremorespecificthansomeelementinG RemoveelementsfromLthat
aremoregeneralthansomeotherelementinL Ifeis
negative: DeleteallelementsfromLthatcovere
ForeachelementrinGthatcoverse:
Replacerbyallofitsmostgeneralspecializations
that 1.donotcovereand
2.aremoregeneralthansomeelementinL
RemoveelementsfromGthat
aremorespecificthansomeotherelementinGwitten&eibe33OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka34BiasImportantdecisionsinlearningsystems:ConceptdescriptionlanguageOrderinwhicht
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 風(fēng)險管理法規(guī)與合規(guī)培訓(xùn)
- 稅務(wù)政策變動應(yīng)對措施計劃
- 新市場開發(fā)的系統(tǒng)思考計劃
- 效率與效果的平衡管理總結(jié)計劃
- 酒店食品安全培訓(xùn)
- 醫(yī)用中心供氧設(shè)備相關(guān)行業(yè)投資方案范本
- 成本管理操控實務(wù)培訓(xùn)
- 商業(yè)專用設(shè)備:條碼設(shè)備相關(guān)項目投資計劃書
- 成本控制與效益分析培訓(xùn)
- 學(xué)校大班班級教學(xué)改革方案計劃
- 膝關(guān)節(jié)核磁共振診斷-嚴(yán)林
- 針灸康復(fù)科中醫(yī)優(yōu)勢病種肩周炎診療方案-
- 五年級上冊數(shù)學(xué)課件-9.3 整理與復(fù)習(xí)-多邊形面積丨蘇教版 (共10張PPT)
- 感染性休克用藥指南
- 手機音腔設(shè)計指南
- 某機械廠降壓變電所的電氣設(shè)計參考(電氣工程課程設(shè)計)
- 鋼結(jié)構(gòu)基本原理試習(xí)題及答案
- 同分異構(gòu)現(xiàn)象和同分異構(gòu)體
- 公安局輔警人員登記表
- (完整word版)網(wǎng)絡(luò)優(yōu)化測試報告
- 《金字塔原理》
評論
0/150
提交評論