2022-2023學年上海市金山區(qū)名校中考考前最后一卷數學試卷含解析_第1頁
2022-2023學年上海市金山區(qū)名校中考考前最后一卷數學試卷含解析_第2頁
2022-2023學年上海市金山區(qū)名校中考考前最后一卷數學試卷含解析_第3頁
2022-2023學年上海市金山區(qū)名校中考考前最后一卷數學試卷含解析_第4頁
2022-2023學年上海市金山區(qū)名校中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發(fā),沿A→B→C的方向運動,到達點C時停止.設點M運動的路程為x,MN2=y,則y關于x的函數圖象大致為A.B.C.D.2.2019年4月份,某市市區(qū)一周空氣質量報告中某項污染指數的數據是:31,35,31,34,30,32,31,這組數據的中位數、眾數分別是()A.32,31 B.31,32 C.31,31 D.32,353.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數量比第一個月多440輛.設該公司第二、三兩個月投放單車數量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4404.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數為()A.80° B.90° C.100° D.102°5.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.6.若二次函數y=-x2+bx+c與x軸有兩個交點(m,0),(m-6,0),該函數圖像向下平移n個單位長度時與x軸有且只有一個交點,則n的值是()A.3 B.6 C.9 D.367.下列計算結果為a6的是()A.a2?a3B.a12÷a2C.(a2)3D.(﹣a2)38.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠09.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB,點P從點A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束,設運動時間為x(單位:s),弦BP的長為y,那么下列圖象中可能表示y與x函數關系的是()A.① B.③ C.②或④ D.①或③10.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣611.汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m12.在正方體的表面上畫有如圖1中所示的粗線,圖2是其展開圖的示意圖,但只在A面上畫有粗線,那么將圖1中剩余兩個面中的粗線畫入圖2中,畫法正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.14.兩地相距的路程為240千米,甲、乙兩車沿同一線路從地出發(fā)到地,分別以一定的速度勻速行駛,甲車先出發(fā)40分鐘后,乙車才出發(fā).途中乙車發(fā)生故障,修車耗時20分鐘,隨后,乙車車速比發(fā)生故障前減少了10千米/小時(仍保持勻速前行),甲、乙兩車同時到達地.甲、乙兩車相距的路程(千米)與甲車行駛時間(小時)之間的關系如圖所示,求乙車修好時,甲車距地還有____________千米.15.將半徑為5,圓心角為144°的扇形圍成一個圈錐的側面,則這個圓錐的底面半徑為.16.如圖,的半徑為,點,,,都在上,,將扇形繞點順時針旋轉后恰好與扇形重合,則的長為_____.(結果保留)17.函數y=1x-1的自變量x的取值范圍是18.如圖,“人字梯”放在水平的地面上,當梯子的一邊與地面所夾的銳角為時,兩梯角之間的距離BC的長為周日亮亮幫助媽媽整理換季衣服,先使為,后又調整為,則梯子頂端離地面的高度AD下降了______結果保留根號.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數y=kx+b的圖象與反比例函數的圖象交于點A(4,3),與y軸的負半軸交于點B,連接OA,且OA=OB.(1)求一次函數和反比例函數的表達式;(2)過點P(k,0)作平行于y軸的直線,交一次函數y=2x+n于點M,交反比例函數的圖象于點N,若NM=NP,求n的值.20.(6分)某初中學校組織200位同學參加義務植樹活動.甲、乙兩位同學分別調查了30位同學的植樹情況,并將收集的數據進行了整理,繪制成統(tǒng)計表1和表2:表1:甲調查九年級30位同學植樹情況每人植樹棵數78910人數36156表2:乙調查三個年級各10位同學植樹情況每人植樹棵數678910人數363126根據以上材料回答下列問題:(1)關于于植樹棵數,表1中的中位數是棵;表2中的眾數是棵;(2)你認為同學(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動情況;(3)在問題(2)的基礎上估計本次活動200位同學一共植樹多少棵?21.(6分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關于原點對稱?(3)將拋物線L平移,使其經過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.22.(8分)如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.23.(8分)已知:在⊙O中,弦AB=AC,AD是⊙O的直徑.求證:BD=CD.24.(10分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.25.(10分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?6.(12分)如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當圓過點時,求圓的半徑;(2)分別聯結和,當時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.27.(12分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:分析y隨x的變化而變化的趨勢,應用排它法求解,而不一定要通過求解析式來解決:∵等邊三角形ABC的邊長為3,N為AC的三等分點,∴AN=1?!喈旤cM位于點A處時,x=0,y=1。①當動點M從A點出發(fā)到AM=的過程中,y隨x的增大而減小,故排除D;②當動點M到達C點時,x=6,y=3﹣1=2,即此時y的值與點M在點A處時的值不相等,故排除A、C。故選B。2、C【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.解答:解:從小到大排列此數據為:30、1、1、1、32、34、35,數據1出現了三次最多為眾數,1處在第4位為中位數.所以本題這組數據的中位數是1,眾數是1.故選C.3、A【解析】

根據題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據題意找到等量關系進行列方程.4、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.5、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.6、C【解析】

設交點式為y=-(x-m)(x-m+6),在把它配成頂點式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點坐標為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點坐標為(m-3,1),∴該函數圖象向下平移1個單位長度時頂點落在x軸上,即拋物線與x軸有且只有一個交點,即n=1.故選C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.7、C【解析】

分別根據同底數冪相乘、同底數冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪相乘、同底數冪相除、冪的乘方的運算法則.8、D【解析】

根據二次根式由意義的條件是:被開方數大于或等于1,和分母不等于1,即可求解.【詳解】根據題意得:,解得:x≥-1且x≠1.故選:D.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數是非負數.9、D【解析】

分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】分兩種情況討論:①當點P順時針旋轉時,BP的長從增加到2,再降到0,再增加到,圖象③符合;②當點P逆時針旋轉時,BP的長從降到0,再增加到2,再降到,圖象①符合.故答案為①或③.故選D.【點睛】本題考查了動點問題函數圖象、圓的有關知識,解題的關鍵理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.10、C【解析】

分別根據二次根式的定義,乘方的意義,負指數冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數冪的意義以及絕對值的定義,熟記定義是解答本題的關鍵.11、B【解析】

利用配方法求二次函數最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【點睛】此題主要考查了利用配方法求最值的問題,根據已知得出頂點式是解題關鍵.12、A【解析】

解:可把A、B、C、D選項折疊,能夠復原(1)圖的只有A.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(或)【解析】

將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.14、90【解析】【分析】觀察圖象可知甲車40分鐘行駛了30千米,由此可求出甲車速度,再根據甲車行駛小時時與乙車的距離為10千米可求得乙車的速度,從而可求得乙車出故障修好后的速度,再根據甲、乙兩車同時到達B地,設乙車出故障前走了t1小時,修好后走了t2小時,根據等量關系甲車用了小時行駛了全程,乙車行駛的路程為60t1+50t2=240,列方程組求出t2,再根據甲車的速度即可知乙車修好時甲車距B地的路程.【詳解】甲車先行40分鐘(),所行路程為30千米,因此甲車的速度為(千米/時),設乙車的初始速度為V乙,則有,解得:(千米/時),因此乙車故障后速度為:60-10=50(千米/時),設乙車出故障前走了t1小時,修好后走了t2小時,則有,解得:,45×2=90(千米),故答案為90.【點評】本題考查了一次函數的實際應用,難度較大,求出速度后能從題中找到必要的等量關系列方程組進行求解是關鍵.15、1【解析】考點:圓錐的計算.分析:求得扇形的弧長,除以1π即為圓錐的底面半徑.解:扇形的弧長為:=4π;這個圓錐的底面半徑為:4π÷1π=1.點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.16、.【解析】

根據題意先利用旋轉的性質得到∠BOD=120°,則∠AOD=150°,然后根據弧長公式計算即可.【詳解】解:∵扇形AOB繞點O順時針旋轉120°后恰好與扇形COD重合,

∴∠BOD=120°,

∴∠AOD=∠AOB+∠BOD=30°+120°=150°,

∴的長=.

故答案為:.【點睛】本題考查了弧長的計算及旋轉的性質,掌握弧長公式l=(弧長為l,圓心角度數為n,圓的半徑為R)是解題的關鍵.17、x>1【解析】依題意可得x-1>0,解得x>1,所以函數的自變量x的取值范圍是x>118、【解析】

根據題意畫出圖形,進而利用銳角三角函數關系得出答案.【詳解】解:如圖1所示:

過點A作于點D,

由題意可得:,

則是等邊三角形,

故BC,

則,

如圖2所示:

過點A作于點E,

由題意可得:,

則是等腰直角三角形,,

則,

故梯子頂端離地面的高度AD下降了

故答案為:.【點睛】此題主要考查了解直角三角形的應用,正確畫出圖形利用銳角三角三角函數關系分析是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】

(1)由點A坐標知OA=OB=5,可得點B的坐標,由A點坐標可得反比例函數解析式,由A、B兩點坐標可得直線AB的解析式;

(2)由k=2知N(2,6),根據NP=NM得點M坐標為(2,0)或(2,12),分別代入y=2x-n可得答案.【詳解】解:(1)∵點A的坐標為(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵點B在y軸的負半軸上,

∴點B的坐標為(0,-5),

將點A(4,3)代入反比例函數解析式y(tǒng)=中,

∴反比例函數解析式為y=,

將點A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函數解析式為y=2x-5;

(2)由(1)知k=2,

則點N的坐標為(2,6),

∵NP=NM,

∴點M坐標為(2,0)或(2,12),

分別代入y=2x-n可得:n=-4或n=1.【點睛】本題主要考查直線和雙曲線的交點問題,解題的關鍵是熟練掌握待定系數法求函數解析式及分類討論思想的運用.20、(1)9,9;(2)乙;(3)1680棵;【解析】

(1)根據中位數定義:將一組數據按照從小到大(或從大到?。┑捻樞蚺帕校绻麛祿膫€數是奇數,則處于中間位置的數就是這組數據的中位數可得答案;(2)根據樣本要具有代表性可得乙同學抽取的樣本比較有代表性;(3)利用樣本估計總體的方法計算即可.【詳解】(1)表1中30位同學植樹情況的中位數是9棵,表2中的眾數是9棵;故答案為:9,9;(2)乙同學所抽取的樣本能更好反映此次植樹活動情況;故答案為:乙;(3)由題意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活動200位同學一共植樹1680棵.【點睛】本題考查了抽樣調查,以及中位數,解題的關鍵是掌握中位數定義及抽樣調查抽取的樣本要具有代表性.21、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】

(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據關于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【點睛】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關鍵.22、(1)見解析;(2)1【解析】

分析:(1)根據平行四邊形的判定與矩形的判定證明即可;(2)根據矩形的性質和三角函數解答即可.詳解:(1)證明:∵CD⊥AB于點D,BE⊥AB于點B,∴.∴CD∥BE.又∵BE=CD,∴四邊形CDBE為平行四邊形.又∵,∴四邊形CDBE為矩形.(2)解:∵四邊形CDBE為矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.點睛:本題考查了矩形的判定與性質,關鍵是根據平行四邊形的判定與矩形的判定解答.23、證明見解析【解析】

根據AB=AC,得到,于是得到∠ADB=∠ADC,根據AD是⊙O的直徑,得到∠B=∠C=90°,根據三角形的內角和定理得到∠BAD=∠DAC,于是得到結論.【詳解】證明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直徑,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴,∴BD=CD.【點睛】本題考查了圓周角定理,熟記圓周角定理是解題的關鍵.24、證明見解析.【解析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點:三角形全等的判定.25、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據相似三角形的對應角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質.26、(1)x=1(2)(1)【解析】

(1)作AM⊥BC、連接AP,由等腰梯形性質知BM=4、AM=1,據此知tanB=tanC=,從而可設PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據PA=PH建立關于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據此求得k的值,從而得出圓P的半徑,再根據兩圓間的位置關系求解可得;(1)在圓P上取點F關于EH的對稱點G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長,從而出答案.【詳解】(1)作AM⊥BC于點M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當k=時,CP=5k=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論