2022-2023學年山東省泰安市新泰市重點達標名校中考數(shù)學押題卷含解析_第1頁
2022-2023學年山東省泰安市新泰市重點達標名校中考數(shù)學押題卷含解析_第2頁
2022-2023學年山東省泰安市新泰市重點達標名校中考數(shù)學押題卷含解析_第3頁
2022-2023學年山東省泰安市新泰市重點達標名校中考數(shù)學押題卷含解析_第4頁
2022-2023學年山東省泰安市新泰市重點達標名校中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm2.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個數(shù)()A.1 B.2 C.3 D.43.如圖所示的幾何體的主視圖是()A. B. C. D.4.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是()A.10π B.15π C.20π D.30π5.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形6.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根7.的平方根是()A.2 B. C.±2 D.±8.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯誤的是()A.①② B.②④ C.①③ D.③④9.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.10.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.12.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).13.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.14.分解因式:9x3﹣18x2+9x=.15.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當點D從點A運動到點B時,線段EF掃過的面積是.其中正確結(jié)論的序號是.16.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點為(2,m),則=____.三、解答題(共8題,共72分)17.(8分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長.18.(8分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標記的數(shù)字分別記為x、y,求點(x,y)位于第二象限的概率.19.(8分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.20.(8分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設(shè)點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.21.(8分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.22.(10分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.(1)當CM:CB=1:4時,求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當△ABM∽△EFN時,求CM的長.23.(12分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.24.某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組銷售額的數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)該商場服裝營業(yè)員的人數(shù)為,圖①中m的值為;(2)求統(tǒng)計的這組銷售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設(shè)每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。2、A【解析】

根據(jù)垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結(jié)論錯誤;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,試驗次數(shù)足夠大時可近似地看做事件A的概率,故此結(jié)論錯誤;③各角相等的圓外切多邊形是正多邊形,此結(jié)論正確;④各角相等的圓內(nèi)接多邊形不一定是正多邊形,如圓內(nèi)接矩形,各角相等,但不是正多邊形,故此結(jié)論錯誤;⑤若一個事件可能發(fā)生的結(jié)果共有n種,再每種結(jié)果發(fā)生的可能性相同是,每一種結(jié)果發(fā)生的可能性是.故此結(jié)論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關(guān)鍵是掌握垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義.3、A【解析】

找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.4、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側(cè)面展開扇形的弧長,∴圓錐的底面周長=圓錐的側(cè)面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B5、D【解析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關(guān)判定定理是解答此類問題的關(guān)鍵.6、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.7、D【解析】

先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.8、B【解析】

先根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯誤.故選B.【點睛】本題考查的是方向角,平行線的性質(zhì),特殊角的三角函數(shù)值,解答此類題需要從運動的角度,正確畫出方位角,再結(jié)合平行線的性質(zhì)求解.9、A【解析】

首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.10、A【解析】

根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關(guān)線段的長度是解決問題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、先向右平移2個單位再向下平移2個單位;4【解析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.12、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點:規(guī)律型13、1【解析】

由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內(nèi)角互補可得∠1+∠3=180°,進而可得∠1的度數(shù).【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.14、9x【解析】試題分析:首先提取公因式9x,然后利用完全平方公式進行因式分解.原式=9x(-2x+1)=9x.考點:因式分解15、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點E與點D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點到直線之間,垂線段最短”可得:點D在線段AB上運動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯誤;③當AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點E與點D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當點F恰好落在上時,連接FB、AF,如圖4所示,∵點E與點D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯誤;⑤∵點D與點E關(guān)于AC對稱,點D與點F關(guān)于BC對稱,∴當點D從點A運動到點B時,點E的運動路徑AM與AB關(guān)于AC對稱,點F的運動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點:1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).16、4【解析】

利用交點(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點睛】本題主要考查了函數(shù)的交點問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)見解析;(2).【解析】

(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點睛】本題考查了全等三角形的判定與性質(zhì)與弧長的計算,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與弧長的公式.18、(1);(2).【解析】

(1)直接根據(jù)概率公式求解;

(2)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出第二象限內(nèi)的點的個數(shù),然后根據(jù)概率公式計算點(x,y)位于第二象限的概率.【詳解】(1)正數(shù)為2,所以該球上標記的數(shù)字為正數(shù)的概率為;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點有2個,所以點(x,y)位于第二象限的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.19、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠1,

∴∠ACD=∠1,

∴MC=MD,

∵ME⊥CD,

∴CD=1CE,

∵CE=1,

∴CD=1,

∴BC=CD=1;

(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,

∴BF=CF=BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∵,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延長AB交DF的延長線于點G,

∵AB∥CD,

∴∠G=∠1,

∵∠1=∠1,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∵∴△CDF≌△BGF(AAS),

∴GF=DF,

由圖形可知,GM=GF+MF,

∴AM=DF+ME.20、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據(jù)的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求一次函數(shù)解析式,坐標與圖形性質(zhì),勾股定理,等腰三角形的判定,以及一次函數(shù)與坐標軸的交點,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵,并注意運用分類討論的思想解決問題.21、(1)證明見解析;(2)補圖見解析;.【解析】

根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結(jié)論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設(shè)AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據(jù)平行四邊形的面積公式即可得到結(jié)論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設(shè),,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.22、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論