版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.2.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.3.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.4.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.5.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.6.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.7.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時,,則使得成立的的取值范圍是()A. B.C. D.8.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.849.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為()A. B. C. D.10.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.12.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為__________.14.在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.15.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.16.已知為正實數(shù),且,則的最小值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.18.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.19.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉(zhuǎn)至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.20.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.21.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.22.(10分)已知.(1)當(dāng)時,求不等式的解集;(2)若時不等式成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當(dāng)時,;當(dāng)時,,故時取得極大值,也即為最大值,當(dāng)時,;當(dāng)時,,所以滿足條件.故選:D【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.2.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.3.B【解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.4.C【解析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運算化簡復(fù)數(shù).【詳解】.故選:C【點睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運算,共軛復(fù)數(shù),屬于基礎(chǔ)題.5.D【解析】
利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6.D【解析】
把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.7.D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.8.B【解析】
由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.9.A【解析】
設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,故選:A【點睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.10.A【解析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系11.C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.12.D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時,則,;當(dāng)時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時要注意對的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點處取最小值為.故答案為:【點睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運算求解能力,屬于基礎(chǔ)題.14.②③【解析】
根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.15.【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎(chǔ)題.16.【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當(dāng)且僅當(dāng),即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析【解析】
(1)取的中點構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.18.(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當(dāng)時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實根,以下給出證明:記,,則關(guān)于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當(dāng)時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當(dāng)時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關(guān)于的方程不可能有三個不同的實根.【點睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.19.(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質(zhì)知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因為//,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質(zhì),利用定義求線面角,屬于中檔題.20.(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的實際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計算能力.21.(1);(2).【解析】
試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點的橫坐標(biāo),代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導(dǎo)得.設(shè)直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得.當(dāng)時,恒成立.當(dāng)時,,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人教育培訓(xùn)機構(gòu)課程購銷擔(dān)保合同2篇
- 2025版新能源汽車停車位租賃與生態(tài)補償協(xié)議2篇
- 二零二五年度誠意金支付及退回協(xié)議合同4篇
- 看大數(shù)據(jù)時代下健康醫(yī)療傳播的發(fā)展與創(chuàng)新路徑
- 跨行業(yè)合作在展覽活動中的應(yīng)用
- 項目制學(xué)習(xí)在學(xué)科教學(xué)中的實踐與評價
- 2025版國際貿(mào)易項目轉(zhuǎn)讓居間協(xié)議書3篇
- 2025版土地承包經(jīng)營合同樣本4篇
- 湖南2025年湖南省生態(tài)環(huán)境廳直屬事業(yè)單位招聘44人筆試歷年參考題庫附帶答案詳解
- 溫州浙江溫州市龍灣區(qū)政務(wù)服務(wù)中心招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- 小學(xué)六年級數(shù)學(xué)奧數(shù)題100題附答案(完整版)
- 湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試參考試題庫(含答案)
- 英漢互譯單詞練習(xí)打印紙
- 2023湖北武漢華中科技大學(xué)招聘實驗技術(shù)人員24人筆試參考題庫(共500題)答案詳解版
- 一氯二氟甲烷安全技術(shù)說明書MSDS
- 母嬰護(hù)理員題庫
- 老年人預(yù)防及控制養(yǎng)老機構(gòu)院內(nèi)感染院內(nèi)感染基本知識
- SWITCH暗黑破壞神3超級金手指修改 版本號:2.7.6.90885
- 2023高考語文全國甲卷詩歌閱讀題晁補之《臨江仙 身外閑愁空滿眼》講評課件
- 物流簽收回執(zhí)單
- 鋼結(jié)構(gòu)廠房造價指標(biāo)
評論
0/150
提交評論