版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a+a2=a32.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a53.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數是()A.50° B.60° C.70° D.80°4.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10105.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE6.據統計,2018年全國春節(jié)運輸人數約為3000000000人,將3000000000用科學記數法表示為()A.0.3×1010B.3×109C.30×108D.300×1077.如圖所示的幾何體的左視圖是()A. B. C. D.8.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內任意一點(點E不在直線AB、CD、AC上),設∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數可能是()A.①②③ B.①②④ C.①③④ D.①②③④9.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.10.若點A(1,a)和點B(4,b)在直線y=-2x+m上,則a與b的大小關系是()A.a>b B.a<bC.a=b D.與m的值有關11.的平方根是()A.2 B. C.±2 D.±12.如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數是()A.8 B.9 C.10 D.11二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若兩個關于x,y的二元一次方程組與有相同的解,則mn的值為_____.14.不等式組x-2>0①2x-6>2②15.如圖,在△ABC中,AB=AC=2,BC=1.點E為BC邊上一動點,連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點F.當EF⊥AC時,EF的長為_______.16.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是_____.17.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.18.如圖(1),將一個正六邊形各邊延長,構成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.20.(6分)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網店,招收5名員工,銷售一種火爆的電子產品,并約定用該網店經營的利潤,逐月償還這筆無息貸款.已知該產品的成本為每件4元,員工每人每月的工資為4千元,該網店還需每月支付其它費用1萬元.該產品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數關系如圖所示.求該網店每月利潤w(萬元)與銷售單價x(元)之間的函數表達式;小王自網店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?21.(6分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.22.(8分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.23.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.24.(10分)計算:(﹣2)0++4cos30°﹣|﹣|.25.(10分)我國古代數學著作《增刪算法統宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數,四軍才分布一疋,請問官軍多少數.”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?26.(12分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現:(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數量關系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數量關系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數量關系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.27.(12分)解方程:
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:直接利用冪的乘方運算法則以及同底數冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.2、D【解析】【分析】根據合并同類項,冪的乘方,同底數冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法,熟練掌握各運算的運算法則是解題的關鍵.3、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.4、D【解析】
根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.5、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質,當等腰三角形的底角對應相等時其頂角也相等,難度不大.6、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.【詳解】解:根據科學計數法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學計數法的定義,確定n的值是易錯點.7、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.8、D【解析】
根據E點有4中情況,分四種情況討論分別畫出圖形,根據平行線的性質與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質與外角定理,解題的關鍵是根據題意分情況討論.9、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.10、A【解析】【分析】根據一次函數性質:中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.由-2<0得,當x12時,y1>y2.【詳解】因為,點A(1,a)和點B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因為,1<4,所以,a>b.故選A【點睛】本題考核知識點:一次函數性質.解題關鍵點:判斷一次函數中y與x的大小關系,關鍵看k的符號.11、D【解析】
先化簡,然后再根據平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術平方根,先把正確化簡是解題的關鍵,本題比較容易出錯.12、A【解析】分析:根據多邊形的內角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.點睛:本題主要考查了多邊形內角和公式及外角的特征.求多邊形的邊數,可以轉化為方程的問題來解決.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
聯立不含m、n的方程求出x與y的值,代入求出m、n的值,即可求出所求式子的值.【詳解】聯立得:,①×2+②,得:10x=20,解得:x=2,將x=2代入①,得:1-y=1,解得:y=0,則,將x=2、y=0代入,得:,解得:,則mn=1,故答案為1.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程都成立的未知數的值.14、x>4【解析】
分別解出不等式組中的每一個不等式,然后根據同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.15、1+【解析】
當AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依據Rt△CFG≌Rt△CFH,可得CH=CG=,再根據勾股定理即可得到EF的長.【詳解】解:如圖,當AB=AC,∠AEF=∠B時,∠AEF=∠ACB,當EF⊥AC時,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,設EF=x,則HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案為1+.【點睛】本題主要考查了角平分線的性質,勾股定理以及等腰三角形的性質的運用,解決問題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.16、【解析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.17、7π【解析】
連接OD,由切線的性質和已知條件可求出∠AOD的度數,再根據弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點睛】本題考查了切線的性質、等腰三角形的判斷和性質以及弧長公式的運用,求出∠AOD的度數是解題的關鍵.18、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】
(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數圖象與幾何變換,一次函數圖象上點的坐標特征,一次函數的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.20、(1)當4≤x≤6時,w1=﹣x2+12x﹣35,當6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數,根據待定系數法分別求直線AB和BC的解析式,又分兩種情況,根據利潤=(售價﹣成本)×銷售量﹣費用,得結論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,當6≤x≤8時,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)當4≤x≤6時,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴當x=6時,w1取最大值是1,當6≤x≤8時,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,當x=7時,w2取最大值是1.5,∴==6,即最快在第7個月可還清10萬元的無息貸款.點睛:本題主要考查學生利用待定系數法求解一次函數關系式,一次函數與一次不等式的應用,利用數形結合的思想,是一道綜合性較強的代數應用題,能力要求比較高.21、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據切線的性質和圓周角定理解答即可;(2)根據勾股定理和三角函數進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質、直角三角形的性質以及圓周角定理.此題難度適中,注意掌握數形結合思想的應用,注意掌握輔助線的作法.22、5【解析】試題分析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相關數量求解即可得.試題解析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半徑為5.23、(30+30)米.【解析】
解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米24、1【解析】分析:按照實數的運算順序進行運算即可.詳解:原式=1.點睛:本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及二次根式,熟練掌握各個知識點是解題的關鍵.25、官有200人,兵有800人【解析】
設官有x人,兵有y人,根據1000官兵正好分1000匹布,即可得出關于x,y的二元一次方程組,解之即可得出結論.【詳解】解:設官有x人,兵有y人,依題意,得:,解得:.答:官有200人,兵有800人.【點睛】本題主要考查二元一次方程組的應用,根據題意列出二元一次方程組是解題的關鍵.26、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】
(1)根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(2)①根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;②根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《騰訊微博操作指南》課件
- 甘孜職業(yè)學院《建筑工程制圖》2023-2024學年第一學期期末試卷
- 甘肅政法大學《有限元分析》2023-2024學年第一學期期末試卷
- 《漂亮的熱帶魚》課件
- 《小兒發(fā)熱的護理》課件
- 三年級數學上冊七年月日看日歷說課稿北師大版
- 三年級科學上冊第1單元水7混合與分離教案2教科版
- 2022年-2023年三支一扶之公共基礎知識基礎試題庫和答案要點
- 小學生優(yōu)教課件下載
- 考評員培訓課件
- 檢察院分級保護項目技術方案
- 土木工程建筑中混凝土裂縫的施工處理技術畢業(yè)論文
- 水電站工程地質勘察報告
- 電站屏柜改造安裝二次工程施工組織設計
- T∕CNFMA B003-2018 林火防撲機械 以汽油機為動力的便攜式化學泡沫滅火機
- DB42∕T 1795-2021 微動勘探技術規(guī)程
- 大潤發(fā)的企業(yè)文化
- 兒童劇劇本─三只小豬
- 標書密封條格式模板大全(共33頁)
- 鐵路交通事故分類表
- TROXLER3440核子密度儀
評論
0/150
提交評論