機(jī)械振動學(xué)二自由度振動有阻尼及強(qiáng)迫振動響應(yīng)陳_第1頁
機(jī)械振動學(xué)二自由度振動有阻尼及強(qiáng)迫振動響應(yīng)陳_第2頁
機(jī)械振動學(xué)二自由度振動有阻尼及強(qiáng)迫振動響應(yīng)陳_第3頁
機(jī)械振動學(xué)二自由度振動有阻尼及強(qiáng)迫振動響應(yīng)陳_第4頁
機(jī)械振動學(xué)二自由度振動有阻尼及強(qiáng)迫振動響應(yīng)陳_第5頁
已閱讀5頁,還剩50頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1FreeandForcedVibrationResponseofTwoDegreeofFreedomSystems

withDamping2SystemswithViscousDampingExtendingtheprevioussectionstoincludetheeffectsofviscousdamping(dashpots)3ViscousDampinginMDOFSystemsTwobasicchoicesforincludingdampingModalDampingAttributesomeamounttoeachmodebasedonexperience,i.e.,anartfulguessorEstimatedampingduetoviscoelasticityusingsomeapproximationmethodModelthedampingmechanismdirectly(hardandstillanareaofresearch-goodforphysicistsbutengineersneedmodelsthatarecorrectenough).4ModalDampingMethodSolvetheundampedvibrationproblemasbeforeHerethemodeshapesandeigenvectorsarerealvaluedandformorthonormalsets,evenforrepeatednaturalfrequencies(knownbecauseissymmetric)5ModalDamping(cont)DecouplesystembasedonMandK,i.e.,usethe“undamped”modesAttributesomezi(zeta)toeachmodeofthedecoupledsystem(aguess.Notknownbeforehand.Canbetestedwithgrossdatalikex):

Alternately:here6TransformBacktoGetPhysicalSolutionUsemodaltransformtoobtainmodalinitialconditionsandcomputeAiandFi:Withr(t)known,usetheinversetransformtorecoverthephysicalsolution:7ModalDampingbyModeSummationCanalsousemodesummationapproachAgain,modesarefromundampedsystemThehigherthefrequency,thesmallertheeffect(becauseoftheexponentialterm).Sojustfewfirstmodesareenough.8Computeq(t),TransformbackTogettheproperinitialconditionsuse:Usetheabovetocomputeq(t)andthen:theresponseinphysicalcoordinates.9ExampleConsider:Subjecttoinitialconditions:ExperimentsdonotgiveC.Theyprovidezeta(inmodalcoordinates)bythehalfpowermethod.Computethesolutionassumingmodaldampingof:10

Computethemodaldecomposition

L=sqrt(M)Computethemodalinitialconditions:11Computethemodalsolutions:Yields:Thenusex(t)=Sr(t)12So,firstseparatesolutionsinthemodalcoordinateswerefoundandthenthemodeswereassembledbytheuseofS.Theresponseinthephysicalcoordinatesisthereforeacombinationofthemodalresponsesjustasintheundampedcase.13LumpedDampingmodelsInsomecases(FEM,machinemodeling),thedampingmatrixisdetermineddirectlyfromtheequationsofmotion.Thenouranalysismuststartwith:Subjectto14GenericExample:IfthedampingmechanismsareknownthenSumforcestofindtheequationsofmotionFreeBodyDiagram:15MatrixformofEquationsofMotion:TheCandKmatriceshavethesameform.Itfollowsfromthesystemitselfthatconsisteddampingandstiffnesselementsinasimilarmanner.16AQuestionofmatrixdecouplingCanwedecouplethesystemwiththesamecoordinatetransformationsasbefore?Ingeneral,thesecannotbedecoupledsinceKandCcannotbediagonalizedsimultaneously17ALittleMatrixTheory18MoreMatrixStuffandNormalModeSystems19ProportionalDamping20ProportionalDamping(cont)21ForcedResponse:theresponseofan2dofsystemtoaforcingtermk1m1x1m2x2k2F1F2c1c2

22IfthesystemofequationsdecouplethenthemethodsofSDOFcanbeappliedSDOF23Withthemodalequationinhandthegeneralsolutionisgiven24Theappliedforceisdistributedacrosstheallofthemodesexceptinaspecialcase.AnexcitationonasinglephysicalDOFmay“spread”toallmodalDOFs(oneFgeneratesmanyf’s)ItisactuallypossibletodriveaMDOFsystematoneofitsnaturalfrequenciesandnotexperienceresonantresponse(anunusualcircumstance)25Example:

A2-dofsystem26Computethemassnormalizedstiffnessmatrixanditseigensolution27Transformthedampingmatrix,theforcingfunctionandwritedownthemodalequations28ComputethemodalvaluesusingthesingledegreeoffreedomformulasThemodaldampingratiosanddampednaturalfrequenciesarecomputedusingtheusualformulasandthecoefficientsfromthetermsinthemodalequations:29UseSDOFformulafortheparticularsolutionNowtransformbacktophysicalcoordinatesNotethattheforceeffectsbothdegreesoffreedomeventhoughitisappliedtoone.30TheFrequencyResponseofeachmodeisplotted:012345-30-20-1001020Frequency(w)Amplitude(dB)R1(w)/f1(w))R2(w)/f2(w))Thisgraphshowstheamplitudeofeachmodeduetoaninputmodalforcef1andf2.Aforceappliedtomass#2F2willcontributetobothmodalforces!31Thefrequencyresponseofeachdegreeoffreedomisplotted012345-50-40-30-20-10010Frequency(w)Amplitude(dB)X1(w)/F2(w))X2(w)/F2(w))Thisgraphshowstheamplitudeofeachmassduetoaninputforceonmass#2.Eachmassisexcitedbytheforceonmass#2Bothmassesareeffectedbybothmodes32ResonanceformultipledegreeoffreedomsystemscanoccurateachofthesystemsnaturalfrequenciesNotethatthefrequencyresponseofthepreviousexampleshowstwopeaks

IfintheoddcasethatbisorthogonaltooneofthemodeshapesthenresonanceinthatmodemaynotoccurIfthemodesarestronglycoupledtheresonantpeaksmaycombine(seeX1/F2inthepreviousslide)andbehardtonoticeSpecialcases:33Example:Illustratingtheeffectoftheinputforceallocation34Calculatingthenaturalfrequenciesandmodeshapesyields:Themassnormalizedeigenvectorsare:35Transformandcomputethemodalequations:36Homework:37LagrangeEquation38TypicalVibrationAnalysisSteps39TypicalVibrationAnalysisSteps40D’AlembertPrinciple41D’AlembertPrincipleApplyNewton’slawtoeachmassVirtualwork42D’AlembertPrincipleVirtualworkdonebynetforcethroughanadmissibleinfinitesimalvirtualdisplacementiszero.GeneralizedcoordinatesIndependentAdmissiblemotionCompletelyfixeverypartsEqualstonumberofDOF43Hamilton’sPrincipleConsider44Hamilton’sPrincipleConsider2ndterm45Hamilton’sPrincip

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論