




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1FreeandForcedVibrationResponseofTwoDegreeofFreedomSystems
withDamping2SystemswithViscousDampingExtendingtheprevioussectionstoincludetheeffectsofviscousdamping(dashpots)3ViscousDampinginMDOFSystemsTwobasicchoicesforincludingdampingModalDampingAttributesomeamounttoeachmodebasedonexperience,i.e.,anartfulguessorEstimatedampingduetoviscoelasticityusingsomeapproximationmethodModelthedampingmechanismdirectly(hardandstillanareaofresearch-goodforphysicistsbutengineersneedmodelsthatarecorrectenough).4ModalDampingMethodSolvetheundampedvibrationproblemasbeforeHerethemodeshapesandeigenvectorsarerealvaluedandformorthonormalsets,evenforrepeatednaturalfrequencies(knownbecauseissymmetric)5ModalDamping(cont)DecouplesystembasedonMandK,i.e.,usethe“undamped”modesAttributesomezi(zeta)toeachmodeofthedecoupledsystem(aguess.Notknownbeforehand.Canbetestedwithgrossdatalikex):
Alternately:here6TransformBacktoGetPhysicalSolutionUsemodaltransformtoobtainmodalinitialconditionsandcomputeAiandFi:Withr(t)known,usetheinversetransformtorecoverthephysicalsolution:7ModalDampingbyModeSummationCanalsousemodesummationapproachAgain,modesarefromundampedsystemThehigherthefrequency,thesmallertheeffect(becauseoftheexponentialterm).Sojustfewfirstmodesareenough.8Computeq(t),TransformbackTogettheproperinitialconditionsuse:Usetheabovetocomputeq(t)andthen:theresponseinphysicalcoordinates.9ExampleConsider:Subjecttoinitialconditions:ExperimentsdonotgiveC.Theyprovidezeta(inmodalcoordinates)bythehalfpowermethod.Computethesolutionassumingmodaldampingof:10
Computethemodaldecomposition
L=sqrt(M)Computethemodalinitialconditions:11Computethemodalsolutions:Yields:Thenusex(t)=Sr(t)12So,firstseparatesolutionsinthemodalcoordinateswerefoundandthenthemodeswereassembledbytheuseofS.Theresponseinthephysicalcoordinatesisthereforeacombinationofthemodalresponsesjustasintheundampedcase.13LumpedDampingmodelsInsomecases(FEM,machinemodeling),thedampingmatrixisdetermineddirectlyfromtheequationsofmotion.Thenouranalysismuststartwith:Subjectto14GenericExample:IfthedampingmechanismsareknownthenSumforcestofindtheequationsofmotionFreeBodyDiagram:15MatrixformofEquationsofMotion:TheCandKmatriceshavethesameform.Itfollowsfromthesystemitselfthatconsisteddampingandstiffnesselementsinasimilarmanner.16AQuestionofmatrixdecouplingCanwedecouplethesystemwiththesamecoordinatetransformationsasbefore?Ingeneral,thesecannotbedecoupledsinceKandCcannotbediagonalizedsimultaneously17ALittleMatrixTheory18MoreMatrixStuffandNormalModeSystems19ProportionalDamping20ProportionalDamping(cont)21ForcedResponse:theresponseofan2dofsystemtoaforcingtermk1m1x1m2x2k2F1F2c1c2
22IfthesystemofequationsdecouplethenthemethodsofSDOFcanbeappliedSDOF23Withthemodalequationinhandthegeneralsolutionisgiven24Theappliedforceisdistributedacrosstheallofthemodesexceptinaspecialcase.AnexcitationonasinglephysicalDOFmay“spread”toallmodalDOFs(oneFgeneratesmanyf’s)ItisactuallypossibletodriveaMDOFsystematoneofitsnaturalfrequenciesandnotexperienceresonantresponse(anunusualcircumstance)25Example:
A2-dofsystem26Computethemassnormalizedstiffnessmatrixanditseigensolution27Transformthedampingmatrix,theforcingfunctionandwritedownthemodalequations28ComputethemodalvaluesusingthesingledegreeoffreedomformulasThemodaldampingratiosanddampednaturalfrequenciesarecomputedusingtheusualformulasandthecoefficientsfromthetermsinthemodalequations:29UseSDOFformulafortheparticularsolutionNowtransformbacktophysicalcoordinatesNotethattheforceeffectsbothdegreesoffreedomeventhoughitisappliedtoone.30TheFrequencyResponseofeachmodeisplotted:012345-30-20-1001020Frequency(w)Amplitude(dB)R1(w)/f1(w))R2(w)/f2(w))Thisgraphshowstheamplitudeofeachmodeduetoaninputmodalforcef1andf2.Aforceappliedtomass#2F2willcontributetobothmodalforces!31Thefrequencyresponseofeachdegreeoffreedomisplotted012345-50-40-30-20-10010Frequency(w)Amplitude(dB)X1(w)/F2(w))X2(w)/F2(w))Thisgraphshowstheamplitudeofeachmassduetoaninputforceonmass#2.Eachmassisexcitedbytheforceonmass#2Bothmassesareeffectedbybothmodes32ResonanceformultipledegreeoffreedomsystemscanoccurateachofthesystemsnaturalfrequenciesNotethatthefrequencyresponseofthepreviousexampleshowstwopeaks
IfintheoddcasethatbisorthogonaltooneofthemodeshapesthenresonanceinthatmodemaynotoccurIfthemodesarestronglycoupledtheresonantpeaksmaycombine(seeX1/F2inthepreviousslide)andbehardtonoticeSpecialcases:33Example:Illustratingtheeffectoftheinputforceallocation34Calculatingthenaturalfrequenciesandmodeshapesyields:Themassnormalizedeigenvectorsare:35Transformandcomputethemodalequations:36Homework:37LagrangeEquation38TypicalVibrationAnalysisSteps39TypicalVibrationAnalysisSteps40D’AlembertPrinciple41D’AlembertPrincipleApplyNewton’slawtoeachmassVirtualwork42D’AlembertPrincipleVirtualworkdonebynetforcethroughanadmissibleinfinitesimalvirtualdisplacementiszero.GeneralizedcoordinatesIndependentAdmissiblemotionCompletelyfixeverypartsEqualstonumberofDOF43Hamilton’sPrincipleConsider44Hamilton’sPrincipleConsider2ndterm45Hamilton’sPrincip
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 砌磚抹灰勞務(wù)合同
- 事業(yè)單位職工勞動合同
- 廠房建筑施工合同
- 軟件合作開發(fā)協(xié)議書8篇
- 第三單元巖石與土壤 教學(xué)設(shè)計-2023-2024學(xué)年科學(xué)四年級下冊教科版
- 第四章第三節(jié) 工業(yè)同步教學(xué)設(shè)計2023-2024學(xué)年八年級上冊地理 人教版
- 格賓加筋土邊坡施工方案
- 二米六鈦金條門施工方案
- 2025新版工程裝修合同8篇
- 專題節(jié)目許可使用協(xié)議范本7篇
- 2024年高考政治考試題海南卷及參考答案
- 中國銀行(香港)有限公司招聘筆試真題2023
- 絕經(jīng)后無癥狀子宮內(nèi)膜增厚診療中國專家共識(2024年版)解讀
- 15萬噸水廠安裝工程施工組織設(shè)計方案
- 結(jié)婚轉(zhuǎn)戶口委托書
- 超級蘆竹種植項目可行性研究報告-具有高經(jīng)濟價值和廣泛應(yīng)用前景
- 離婚協(xié)議書模板可打印(2024版)
- 部編二年級道德與法治下冊課程綱要二年級《道德與法治》下冊 學(xué)期綱要
- 自動體外除顫器項目創(chuàng)業(yè)計劃書
- 養(yǎng)老機構(gòu)績效考核及獎勵制度
- 2024年越南煤礦設(shè)備再制造行業(yè)現(xiàn)狀及前景分析2024-2030
評論
0/150
提交評論