2021-2022學(xué)年吉林市普通中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年吉林市普通中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年吉林市普通中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年吉林市普通中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年吉林市普通中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.842.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.963.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.4.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.5.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.6.已知F為拋物線y2=4x的焦點(diǎn),過點(diǎn)F且斜率為1的直線交拋物線于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.47.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2829.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.11.方程的實(shí)數(shù)根叫作函數(shù)的“新駐點(diǎn)”,如果函數(shù)的“新駐點(diǎn)”為,那么滿足()A. B. C. D.12.盒子中有編號為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號不同的球,則取的3個(gè)球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線:上位于第一象限內(nèi)的一點(diǎn).已知以為直徑的圓被直線所截得的弦長為,則點(diǎn)的坐標(biāo)__________.14.四邊形中,,,,,則的最小值是______.15.已知,,且,則的最小值是______.16.若關(guān)于的不等式在時(shí)恒成立,則實(shí)數(shù)的取值范圍是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.18.(12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.20.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.21.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動(dòng)點(diǎn),周長的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.22.(10分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.2.D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.3.C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.4.D【解析】

先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)椋院瘮?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.5.C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.6.C【解析】

將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點(diǎn)睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.7.A【解析】

先求解函數(shù)的圖象關(guān)于直線對稱的等價(jià)條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點(diǎn)睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.8.B【解析】

將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題9.A【解析】

準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來.10.D【解析】

利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時(shí),取得最小值,最小值為,故選D.【點(diǎn)睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識(shí)點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.11.D【解析】

由題設(shè)中所給的定義,方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,根據(jù)零點(diǎn)存在定理即可求出的大致范圍【詳解】解:由題意方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,對于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點(diǎn),故函數(shù)的“新駐點(diǎn)”為,那么故選:.【點(diǎn)睛】本題是一個(gè)新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..12.B【解析】

由題意,取的3個(gè)球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因?yàn)闉閳A的直徑,則所對的圓周角,則,則為點(diǎn)到直線:的距離.所以,則.又因?yàn)辄c(diǎn)在直線:上,設(shè),則.解得,則.故答案為:【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,是基礎(chǔ)題.14.【解析】

在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.15.8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.16.【解析】

利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進(jìn)而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是?!军c(diǎn)睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)證明見解析.【解析】

(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時(shí),恒成立,當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時(shí),,.當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時(shí),,則在上是減函數(shù).④當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時(shí),,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學(xué)生邏輯推理能力,是一道較難的題.18.(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點(diǎn),∴不過原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.∴由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r(shí),四邊形為平行四邊形.考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時(shí),點(diǎn)是弦的中點(diǎn),(1)知道中點(diǎn)坐標(biāo),求直線的斜率,或知道直線斜率求中點(diǎn)坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時(shí),也可以選擇點(diǎn)差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時(shí)除以得,而,,即得到結(jié)果,(2)對于用坐標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯(lián)立求兩個(gè)坐標(biāo),最后求斜率.19.(1)(2)(3)直線平面,證明見解析【解析】

取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個(gè)法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點(diǎn),連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設(shè)平面的一個(gè)法向量為.由,取,得.(1)證明:設(shè)直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個(gè)法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題.20.(1)詳見解析;(2).【解析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積法求解即可.【詳解】(1)因?yàn)?,,,是的中點(diǎn),,為直三棱柱,所以平面,因?yàn)闉橹悬c(diǎn),所以平面,,又,平面(2),又分別是中點(diǎn),.由(1)知,,又平面,取中點(diǎn)為,連接如圖,則,平面,設(shè)點(diǎn)到平面的距離為,由,得,即,解得,點(diǎn)到平面的距離為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點(diǎn)到面的距離;考查邏輯推理能力和運(yùn)算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論