版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知點P是雙曲線y=上的一個動點,連結(jié)OP,若將線段OP繞點O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣2.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.3.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設(shè)點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數(shù)關(guān)系的圖象是()A. B. C. D.4.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣15.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°6.某服裝店用10000元購進一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購進第二批這種襯衫,所進件數(shù)比第一批多40%,每件襯衫的進價比第一批每件襯衫的進價多10元,求第一批購進多少件襯衫?設(shè)第一批購進x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=7.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.29.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)10.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒二、填空題(本大題共6個小題,每小題3分,共18分)11.在一次射擊訓練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.12.已知關(guān)于x的不等式組只有四個整數(shù)解,則實數(shù)a的取值范是______.13.函數(shù)y=中,自變量x的取值范圍是________.14.不等式2x-5<7-(x-5)的解集是______________.15.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉(zhuǎn),使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.16.工人師傅常用角尺平分一個任意角.做法如下:如圖,∠AOB是一個任意角,在邊OA,OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合.過角尺頂點C的射線OC即是∠AOB的平分線.做法中用到全等三角形判定的依據(jù)是______.三、解答題(共8題,共72分)17.(8分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結(jié)論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.18.(8分)一件上衣,每件原價500元,第一次降價后,銷售甚慢,于是再次進行大幅降價,第二次降價的百分率是第一次降價的百分率的2倍,結(jié)果這批上衣以每件240元的價格迅速售出,求兩次降價的百分率各是多少.19.(8分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?20.(8分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經(jīng)過點C時,求直線DP的函數(shù)解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.21.(8分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.22.(10分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(12分)某地2015年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵?24.如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿落在地面的影子長為米,且點、、、在同一條直線上,點、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù):,,).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設(shè)P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【點睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.2、C【解析】
根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.3、C【解析】分析:本題需要分兩種情況來進行計算得出函數(shù)解析式,即當點N和點D重合之前以及點M和點B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設(shè)當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數(shù);當2≤t≤4時,S=t,為一次函數(shù),故選C.點睛:本題主要考查的就是函數(shù)圖像的實際應用問題,屬于中等難度題型.解答這個問題的關(guān)鍵就是得出函數(shù)關(guān)系式.4、A【解析】
直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關(guān)鍵.5、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.6、B【解析】
根據(jù)題意表示出襯衫的價格,利用進價的變化得出等式即可.【詳解】解:設(shè)第一批購進x件襯衫,則所列方程為:+10=.故選B.【點睛】此題主要考查了由實際問題抽象出分式方程,正確找出等量關(guān)系是解題關(guān)鍵.7、C【解析】
y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關(guān)鍵.8、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.9、C【解析】
作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關(guān)于x軸對稱,可知點D′的坐標為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.10、B【解析】
設(shè)應選取的木棒長為x,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍.進而可得出結(jié)論.【詳解】設(shè)應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.12、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取小;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個整數(shù)解,根據(jù)解集取出四個整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個整數(shù)解,即為1,0,?1,?2,可得出實數(shù)a的范圍為故答案為點睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個整數(shù)解覺得實數(shù)的取值范圍.13、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.14、x<【解析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.15、.【解析】
試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉(zhuǎn),使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉(zhuǎn)的性質(zhì).16、SSS.【解析】
由三邊相等得△COM≌△CON,即由SSS判定三角全等.做題時要根據(jù)已知條件結(jié)合判定方法逐個驗證.【詳解】由圖可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分線.故答案為:SSS.【點睛】本題考查了全等三角形的判定及性質(zhì).要熟練掌握確定三角形的判定方法,利用數(shù)學知識解決實際問題是一種重要的能力,要注意培養(yǎng).三、解答題(共8題,共72分)17、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質(zhì).18、40%【解析】
先設(shè)第次降價的百分率是x,則第一次降價后的價格為500(1-x)元,第二次降價后的價格為500(1-2x),根據(jù)兩次降價后的價格是240元建立方程,求出其解即可.【詳解】第一次降價的百分率為x,則第二次降價的百分率為2x,根據(jù)題意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.則第一次降價的百分率為20%,第二次降價的百分率為40%.【點睛】本題考查了一元二次方程解實際問題,讀懂題意,找出題目中的等量關(guān)系,列出方程,求出符合題的解即可.19、(1)24,120°;(2)見解析;(3)1000人【解析】
(1)由建模的人數(shù)除以占的百分比,求出調(diào)查的總?cè)藬?shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補全條形統(tǒng)計圖;(3)根據(jù)隨機取出人數(shù)獲獎的人數(shù)比,即可得到結(jié)果.【詳解】解:(1)該校參加航模比賽的總?cè)藬?shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.20、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設(shè)直線DP解析式為y=kx+b,將D與B坐標代入求出k與b的值,即可確定出解析式;
(2)①當P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關(guān)系式;
②設(shè)P(m,1),則PB=PB′=m,根據(jù)勾股定理求出m的值,求出此時P坐標即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標性質(zhì)求出P坐標即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長方形,∴C(6,1).設(shè)此時直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時直線DP解析式為y=x+2;(2)①當點P在線段AC上時,OD=2,高為6,S=6;當點P在線段BC上時,OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設(shè)P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時點P的坐標是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根據(jù)勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②當BP2=DP2時,此時P2(6,6);③當DB=DP3=8時,在Rt△DEP3中,DE=6,根據(jù)勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),綜上,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).點睛:此題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,坐標與圖形性質(zhì),等腰三角形的性質(zhì),勾股定理,利用了分類討論的思想,熟練掌握待定系數(shù)法是解本題第一問的關(guān)鍵.21、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點睛】本題考查了相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì).22、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】
(1)先根據(jù)點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設(shè)點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設(shè)點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設(shè)拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設(shè)點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國厚料儀器數(shù)據(jù)監(jiān)測研究報告
- 2024年天津市中考語文試題含答案
- 2024年中國玻璃鋼模壓制品市場調(diào)查研究報告
- 2024年中國注塑網(wǎng)板市場調(diào)查研究報告
- 2012年事業(yè)單位考試公共基礎(chǔ)知識單選題題庫
- 2024年中國散熱器手動調(diào)節(jié)閥市場調(diào)查研究報告
- 電影節(jié)安保工作總結(jié)與經(jīng)驗分享計劃
- 村級公路損壞修復協(xié)議書
- 合理安排會計工作時間表計劃
- 北京技術(shù)合同登記實務(wù)
- 內(nèi)蒙古呼和浩特市回民區(qū)2023-2024學年九年級上學期期中考試歷史試題(含答案)
- 2021年4月自考00409美育基礎(chǔ)試題及答案含解析
- 原料粒度對超白玻璃熔化澄清質(zhì)量的影響
- 2023海上風電機組漂浮式平臺穩(wěn)定性控制策略
- 新視野大學英語讀寫教程1(第三版)教案
- 校園文化知識講座
- 開展法律宣傳知識講座
- 傅青主女科之帶下病
- 2024年八年級語文上冊期末專項復習:病句的辨識與修改
- 培養(yǎng)兒童安全意識
- 法院服務(wù)外包電子卷宗隨案生成掃描服務(wù)方案
評論
0/150
提交評論