版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.2.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.103.魏晉時期的數(shù)學家劉徽首創(chuàng)割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內(nèi)接正多邊形,當正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續(xù)努力,當正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據(jù)“割圓術”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π4.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a105.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.6.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.7.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.728.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(
)A.30°B.45°C.50°D.60°9.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④10.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應點的坐標為B'(2,0),則點A的對應點A'的坐標為___.12.如圖,在△ABC中,DE∥BC,,則=_____.13.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.14.為選拔一名選手參加全國中學生游泳錦標賽自由泳比賽,我市四名中學生參加了男子100米自由泳訓練,他們成績的平均數(shù)及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果選拔一名學生去參賽,應派_________去.15.關于x的不等式組的整數(shù)解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤416.如果兩圓的半徑之比為,當這兩圓內(nèi)切時圓心距為3,那么當這兩圓相交時,圓心距d的取值范圍是__________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.18.(8分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產(chǎn)量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產(chǎn)量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?19.(8分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.20.(8分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.21.(8分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).22.(10分)在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;(3)根據(jù)(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.23.(12分)先化簡,再求值:,其中,a、b滿足.24.在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式.求機場大巴與貨車相遇地到機場C的路程.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,
∴原拋物線的頂點坐標為(-1,2),
令x=0,則y=3,
∴拋物線與y軸的交點坐標為(0,3),
∵拋物線繞與y軸的交點旋轉180°,
∴所得拋物線的頂點坐標為(1,4),
∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].
故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點的變化確定函數(shù)解析式的變化可以使求解更簡便.2、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.3、C【解析】
連接OC、OD,根據(jù)正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.4、B【解析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.5、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.6、A【解析】
根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.7、B【解析】
根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.8、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準直角三角形的對應邊.9、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關于點A中心對稱。故選B。10、D【解析】
根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、(3,2)【解析】
根據(jù)平移的性質即可得到結論.【詳解】∵將線段AB沿x軸的正方向平移,若點B的對應點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點睛】本題考查了坐標與圖形變化-平移.解決本題的關鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.12、【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質,中等難度,熟記相似三角形的面積比等于相似比的平方是解題關鍵.13、10或1【解析】
分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點睛】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.14、乙【解析】
∵丁〉甲乙=丙,∴從乙和丙中選擇一人參加比賽,
∵S
乙2<S
丙2,
∴選擇乙參賽,
故答案是:乙.15、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個,求出實數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數(shù)解,∴整數(shù)解為:故選C.點睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個數(shù),確定a的取值范圍.16、.【解析】
先根據(jù)比例式設兩圓半徑分別為,根據(jù)內(nèi)切時圓心距列出等式求出半徑,然后利用相交時圓心距與半徑的關系求解.【詳解】解:設兩圓半徑分別為,由題意,得3x-2x=3,解得,則兩圓半徑分別為,所以當這兩圓相交時,圓心距d的取值范圍是,即,故答案為.【點睛】本題考查了圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關系,熟練掌握圓心距與圓位置關系的數(shù)量關系是解決本題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)1【解析】
分析:(1)根據(jù)平行四邊形的判定與矩形的判定證明即可;(2)根據(jù)矩形的性質和三角函數(shù)解答即可.詳解:(1)證明:∵CD⊥AB于點D,BE⊥AB于點B,∴.∴CD∥BE.又∵BE=CD,∴四邊形CDBE為平行四邊形.又∵,∴四邊形CDBE為矩形.(2)解:∵四邊形CDBE為矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.點睛:本題考查了矩形的判定與性質,關鍵是根據(jù)平行四邊形的判定與矩形的判定解答.18、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產(chǎn)量+B種生姜的產(chǎn)量=總產(chǎn)量,列方程求解;(2)設A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關系列出函數(shù)關系式,在x的取值范圍內(nèi)求總產(chǎn)量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù)題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題意得,x≥12設全部收購該基地生姜的年總收入為y元,則y=8×2000x+7×2500(30-x)=-1500x+525000,∵y隨x的增大而減小,∴當x=10時,y有最大值,此時,30-x=20,y的最大值為510000元,答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【點睛】本題考查了一次函數(shù)的應用.關鍵是根據(jù)總產(chǎn)量=A種生姜的產(chǎn)量+B種生姜的產(chǎn)量,列方程或函數(shù)關系式.19、(1)見解析;(2)1【解析】
(1)由矩形的性質可知∠A=∠C=90°,由翻折的性質可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點睛】本題考查了折疊的性質、全等三角形的判定和性質以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.20、∵平分平分,∴在與中,.【解析】分析:根據(jù)角平分線性質和已知求出∠ACB=∠DBC,根據(jù)ASA推出△ABC≌△DCB,根據(jù)全等三角形的性質推出即可.解答:證明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC與△DCB中,,∴△ABC≌△DCB,∴AB=DC.21、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質,可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.22、(1)作圖見解析;(2)如圖所示,點A的坐標為(0,1),點C的坐標為(-3,1);(3)如圖所示,點B2的坐標為(3,-5),點C2的坐標為(3,-1).【解析】
(1)分別作出點B個點C旋轉后的點,然后順次連接可以得到;(2)根據(jù)點B的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合法的居間工程合同書(2025年)
- 版畫課程設計
- 房屋抵押購銷合同2025年
- 閥門檢測服務合同
- 實習期員工勞動合同書(2025年)
- 扎染課課程設計
- 食品廠房轉讓合同協(xié)議
- 區(qū)塊鏈技術在供應鏈金融中的應用協(xié)議
- 機械建模課程設計
- 企業(yè)級技術應用研發(fā)合作合同
- 全面設備保養(yǎng)TPM培訓教材課件
- 二保焊作業(yè)指導書
- 垃圾焚燒發(fā)電廠項目給排水安裝工程專項方案
- DB64-T 1147-2022 寧夏工業(yè)單位產(chǎn)品能源消耗限額
- 授課比賽評分表
- XXXX供電項目可行性研究報告
- 抗菌藥物供應目錄備案表
- TSG G0002-2010 鍋爐節(jié)能技術監(jiān)督管理規(guī)程
- cass實體名稱,圖層,實體代碼對照表
- 印刷工藝-ppt課件
- 員工訪談記錄表完整優(yōu)秀版
評論
0/150
提交評論