2021-2022學(xué)年福建省建甌市達標名校中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年福建省建甌市達標名校中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年福建省建甌市達標名校中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年福建省建甌市達標名校中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年福建省建甌市達標名校中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人2.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-23.如果兩圓只有兩條公切線,那么這兩圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.外離4.“鳳鳴”文學(xué)社在學(xué)校舉行的圖書共享儀式上互贈圖書,每個同學(xué)都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設(shè)該組共有x名同學(xué),那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2105.在下列網(wǎng)格中,小正方形的邊長為1,點A、B、O都在格點上,則的正弦值是A. B. C. D.6.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米7.我國古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.8.若a+|a|=0,則等于()A.2﹣2a B.2a﹣2 C.﹣2 D.29.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.10.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.12.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數(shù)y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.13.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.14.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當點P運動到PA與腰垂直的位置時,點P運動的時間應(yīng)為_____秒.15.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.16.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內(nèi)分別填上適當?shù)臄?shù),使得將這個表面展開圖折成正方體后,相對面上的兩個數(shù)互為相反數(shù),則填在B內(nèi)的數(shù)為______.三、解答題(共8題,共72分)17.(8分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經(jīng)過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O(shè)、C、P為頂點的三角形與△AOE相似,求點P的坐標;(3)若將(2)的線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.18.(8分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.19.(8分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)20.(8分)在平面直角坐標系中,拋物線經(jīng)過點A(-1,0)和點B(4,5).(1)求該拋物線的函數(shù)表達式.(2)求直線AB關(guān)于x軸對稱的直線的函數(shù)表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.21.(8分)先化簡:,再請你選擇一個合適的數(shù)作為x的值代入求值.22.(10分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?23.(12分)如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內(nèi)有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應(yīng)).24.隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學(xué)生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調(diào)查結(jié)果估計1200名學(xué)生中最喜歡用QQ進行溝通的學(xué)生有多少名?(4)甲、乙兩名同學(xué)從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.2、D【解析】

把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù),而平移時,頂點的縱坐標不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù).∵左、右平移時,頂點的縱坐標不變,∴平移后的頂點坐標為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標不變;左右平移時,點的縱坐標不變.同時考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點的坐標特征.3、C【解析】

兩圓內(nèi)含時,無公切線;兩圓內(nèi)切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關(guān)系.熟悉兩圓的不同位置關(guān)系中的外公切線和內(nèi)公切線的條數(shù).4、B【解析】

設(shè)全組共有x名同學(xué),那么每名同學(xué)送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.5、A【解析】

由題意根據(jù)勾股定理求出OA,進而根據(jù)正弦的定義進行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.6、C【解析】當60cm的木條與20cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為90cm與120cm;當60cm的木條與30cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為40cm與80cm;當60cm的木條與40cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.7、C【解析】

根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.8、A【解析】

直接利用二次根式的性質(zhì)化簡得出答案.【詳解】∵a+|a|=0,∴|a|=-a,則a≤0,故原式=2-a-a=2-2a.故選A.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確化簡二次根式是解題關(guān)鍵.9、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.10、C【解析】

根據(jù)題意可以寫出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應(yīng)的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結(jié)合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側(cè)面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設(shè)扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算12、1【解析】

利用對稱性可設(shè)出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設(shè)AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數(shù)與正方形和三角形面積的運用,表示出E和F的坐標是關(guān)鍵.13、1.【解析】

根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,

∴(a+b)(a-b)=8,

∵a+b=4,

∴a-b=1,

故答案是:1.【點睛】考查了平方差,關(guān)鍵是掌握(a+b)(a-b)=a1-b1.14、7秒或25秒.【解析】考點:勾股定理;等腰三角形的性質(zhì).專題:動點型;分類討論.分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質(zhì)和勾股定理求解.15、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.16、1【解析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內(nèi)的數(shù)為1.故答案為1.三、解答題(共8題,共72分)17、(1)y=x2﹣x;(2)點P坐標為(0,)或(0,);(3).【解析】

(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點坐標,以及B點坐標,進而利用待定系數(shù)法求二次函數(shù)解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【詳解】(1)過點A作AH⊥x軸于點H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點坐標為:(-1,),B點坐標為:(2,0),將兩點代入y=ax2+bx得:,解得:,∴拋物線的表達式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當OP=OC或OP′=2OC時,△POC與△AOE相似,∴OP=,OP′=,∴點P坐標為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【點睛】本題考查二次函數(shù)綜合題、解直角三角形、相似三角形的判定和性質(zhì)、兩點之間線段最短等知識,解題的關(guān)鍵是學(xué)會由分類討論的思想思考問題,學(xué)會構(gòu)造相似三角形解決最短問題,屬于中考壓軸題.18、(1);(2)見解析;(3)【解析】

(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)連接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線;(3)設(shè)AD=x,則BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.【點睛】本題考查切線的證明及圓與三角形相似的綜合,為中考常考題型,需引起重視.19、17.3米.【解析】分析:過點C作于D,根據(jù),得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應(yīng)用,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.20、(1)(2)(3)【解析】

(1)根據(jù)待定系數(shù)法,可得二次函數(shù)的解析式;(2)根據(jù)待定系數(shù)法,可得AB的解析式,根據(jù)關(guān)于x軸對稱的橫坐標相等,縱坐標互為相反數(shù),可得答案;(3)根據(jù)PM<PN,可得不等式,利用絕對值的性質(zhì)化簡解不等式,可得答案.【詳解】(1)將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,拋物線的解析式為y=x2﹣2x﹣3;(2)設(shè)AB的解析式為y=kx+b,將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,直線AB的解析式為y=x+1,直線AB關(guān)于x軸的對稱直線的表達式y(tǒng)=﹣(x+1),化簡,得:y=﹣x﹣1;(3)設(shè)M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.故當PM<PN時,求點P的橫坐標xP的取值范圍是2<xP<2.【點睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是待定系數(shù)法,解(2)的關(guān)鍵是利用關(guān)于x軸對稱的橫坐標相等,縱坐標互為相反數(shù);解(3)的關(guān)鍵是利用絕對值的性質(zhì)化簡解不等式.21、x﹣1,1.【解析】

先通分計算括號里的,再計算括號外的,最后根據(jù)分式性質(zhì),找一個恰當?shù)臄?shù)2(此數(shù)不唯一)代入化簡后的式子計算即可.【詳解】解:原式==x﹣1,根據(jù)分式的意義可知,x≠0,且x≠±1,當x=2時,原式=2﹣1=1.【點睛】本題主要考查分式的化簡求值,化簡過程中要注意運算順序,化簡結(jié)果是最簡形式,難點在于當未知數(shù)的值沒有明確給出時,所選取的未知數(shù)的值必須使原式的各分式都有意義,且除數(shù)不能為零.22、這項工程的規(guī)定時間是83天【解析】

依據(jù)題意列分式方程即可.【詳解】設(shè)這項工程的規(guī)定時間為x天,根據(jù)題意得451解得x=83.檢驗:當x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規(guī)定時間是83天.【點睛】正確理解題意是解題的關(guān)鍵,注意檢驗.23、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進而得出答案即可;

(2)首先求出直線OB的解析式為y=x,進而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點即可;

(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質(zhì)得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設(shè)直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關(guān)于直線OB的對稱點A′的坐標是(0,6),根據(jù)軸對稱性質(zhì)和三線合一性質(zhì)得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論