版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.計(jì)算的結(jié)果是(
)A. B. C. D.22.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°3.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°4.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.45.-3的相反數(shù)是()A. B.3 C. D.-36.如圖,該圖形經(jīng)過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應(yīng) D.冷7.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤8.若,則的值為()A.12 B.2 C.3 D.09.用配方法解方程時,可將方程變形為()A. B. C. D.10.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米二、填空題(本大題共6個小題,每小題3分,共18分)11.已知反比例函數(shù),在其圖象所在的每個象限內(nèi),的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.12.點(diǎn)A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關(guān)系是_____.13.如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=43,則S陰影=_____.14.已知a+1a=3,則a15.若一元二次方程x2﹣2x﹣m=0無實(shí)數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過第_____象限.16.若一個多邊形的每一個外角都等于40°,則這個多邊形的邊數(shù)是.三、解答題(共8題,共72分)17.(8分)AB為⊙O直徑,C為⊙O上的一點(diǎn),過點(diǎn)C的切線與AB的延長線相交于點(diǎn)D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長.18.(8分)如圖,一次函數(shù)y=﹣12x+52的圖象與反比例函數(shù)y=(1)求反比例函數(shù)的解析式;(2)在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出其最小值和P點(diǎn)坐標(biāo).19.(8分)如圖,AB是⊙O的直徑,CD切⊙O于點(diǎn)D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)20.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請問是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.21.(8分)某射擊隊(duì)教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計(jì)如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計(jì)算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆?、“變小”或“不變”)22.(10分)已知:如圖,在□ABCD中,點(diǎn)G為對角線AC的中點(diǎn),過點(diǎn)G的直線EF分別交邊AB、CD于點(diǎn)E、F,過點(diǎn)G的直線MN分別交邊AD、BC于點(diǎn)M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時,求證:BE=BN.23.(12分)如圖,已知⊙O經(jīng)過△ABC的頂點(diǎn)A、B,交邊BC于點(diǎn)D,點(diǎn)A恰為的中點(diǎn),且BD=8,AC=9,sinC=,求⊙O的半徑.24.化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
化簡二次根式,并進(jìn)行二次根式的乘法運(yùn)算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點(diǎn)睛】本題主要考查二次根式的化簡以及二次根式的混合運(yùn)算.2、D【解析】
能說明是假命題的反例就是能滿足已知條件,但不滿足結(jié)論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點(diǎn)睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關(guān)鍵.3、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內(nèi)錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內(nèi)錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內(nèi)角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點(diǎn)睛】本題考查平行線的判定,難度不大.4、B【解析】
先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).5、B【解析】
根據(jù)相反數(shù)的定義與方法解答.【詳解】解:-3的相反數(shù)為.故選:B.【點(diǎn)睛】本題考查相反數(shù)的定義與求法,熟練掌握方法是關(guān)鍵.6、A【解析】
正方體的平面展開圖中,相對面的特點(diǎn)是中間必須間隔一個正方形,據(jù)此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應(yīng)”相對.故選:A【點(diǎn)睛】本題主要考查了利用正方體及其表面展開圖的特點(diǎn)解題,明確正方體的展開圖的特征是解決此題的關(guān)鍵7、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點(diǎn),
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點(diǎn)M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.8、A【解析】
先根據(jù)得出,然后利用提公因式法和完全平方公式對進(jìn)行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點(diǎn)睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關(guān)鍵.9、D【解析】
配方法一般步驟:將常數(shù)項(xiàng)移到等號右側(cè),左右兩邊同時加一次項(xiàng)系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點(diǎn)睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關(guān)鍵.10、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
直接利用反比例函數(shù)的增減性進(jìn)而得出圖象的分布.【詳解】∵反比例函數(shù)y(k≠0),在其圖象所在的每個象限內(nèi),y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【點(diǎn)睛】本題考查了反比例的性質(zhì),正確掌握反比例函數(shù)圖象的分布規(guī)律是解題的關(guān)鍵.12、y2<y3<y1【解析】
把點(diǎn)的坐標(biāo)分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當(dāng)x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當(dāng)x=2時,y2=2×22-4×2+c=c,當(dāng)x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點(diǎn)睛】本題主要考查二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握函數(shù)圖象上點(diǎn)的坐標(biāo)滿足函數(shù)解析式是解題的關(guān)鍵.13、8π3【解析】
根據(jù)垂徑定理求得CE=ED=23,然后由圓周角定理知∠DOE=60°,然后通過解直角三角形求得線段OD、OE的長度,最后將相關(guān)線段的長度代入S陰影=S扇形ODB-S△DOE+S【詳解】如圖,假設(shè)線段CD、AB交于點(diǎn)E,∵AB是O的直徑,弦CD⊥AB,∴CE=ED=2又∵∠BCD=30∴∠DOE=2∠BCD=60∴OE=DE∴S陰影=S扇形ODB?S△DOE+S△BEC=60故答案為:8π3【點(diǎn)睛】考查圓周角定理,垂徑定理,扇形面積的計(jì)算,熟練掌握扇形的面積公式是解題的關(guān)鍵.14、7【解析】
根據(jù)完全平方公式可得:原式=(a+115、一【解析】∵一元二次方程x2-2x-m=0無實(shí)數(shù)根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過二三四象限,不經(jīng)過第一象限.
故答案是:一.16、9【解析】解:360÷40=9,即這個多邊形的邊數(shù)是9三、解答題(共8題,共72分)17、(2)見解析;(2)2+.【解析】
(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;
(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,根據(jù)勾股定理計(jì)算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,∵E是AB中點(diǎn),∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.18、(1)y=2x(2)(0,【解析】
(1)根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得出12【詳解】(1)∵反比例函數(shù)y==kx∴12∵k>0,∴k=2,故反比例函數(shù)的解析式為:y=2x(2)作點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′,連接A′B,交y軸于點(diǎn)P,則PA+PB最?。蓎=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A(chǔ)′B=4+12+1設(shè)直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點(diǎn)坐標(biāo)為(0,1710【點(diǎn)睛】本題考查的是反比例函數(shù)圖象與一次函數(shù)圖象的交點(diǎn)問題以及最短路線問題,解題的關(guān)鍵是確定PA+PB最小時,點(diǎn)P的位置,靈活運(yùn)用數(shù)形結(jié)合思想求出有關(guān)點(diǎn)的坐標(biāo)和圖象的解析式是解題的關(guān)鍵.19、(1)證明見解析;(2);【解析】
(1)連接OD,先根據(jù)切線的性質(zhì)得到∠CDO=90°,再根據(jù)平行線的性質(zhì)得到∠AOC=∠OBD,∠COD=∠ODB,又因?yàn)镺B=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據(jù)全等三角形的判定與性質(zhì)得到∠CAO=∠CDO=90°,根據(jù)切線的判定即可得證;(2)因?yàn)锳B=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD為等邊三角形,圖中陰影部分的面積=扇形DOB的面積﹣△DOB的面積,=.【點(diǎn)睛】本題主要考查切線的判定與性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),扇形的面積公式等,難度中等,屬于綜合題,解此題的關(guān)鍵在于熟練掌握其知識點(diǎn).20、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】
(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時,則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對角線時,由A、F的坐標(biāo)可求得平行四邊形的對稱中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點(diǎn),∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時,y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時,則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點(diǎn)M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對角線時,∵A(4,0),F(xiàn)(2,2),∴線段AF的中點(diǎn)為(3,1),即平行四邊形的對稱中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∵t>2,∴t=,∴M點(diǎn)坐標(biāo)為(,2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(,2)或(,﹣2).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.在(1)中求得拋物線的頂點(diǎn)坐標(biāo)是解題的關(guān)鍵,注意拋物線頂點(diǎn)式的應(yīng)用,在(2)中求得△EDB各邊的長度是解題的關(guān)鍵,在(3)中確定出M點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,注意分類討論.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度較大.21、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解析】
(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;
(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進(jìn)行比較,即可得出答案;
(3)根據(jù)方差公式進(jìn)行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;
在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;
故答案為8,6和9;
(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,
則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均數(shù)是:(6+6+9+9+10)÷5=8,
則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成績比較穩(wěn)定;
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。?/p>
故答案為變?。军c(diǎn)睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計(jì)算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 標(biāo)準(zhǔn)版2024建設(shè)工程設(shè)計(jì)合同
- 2024年聘用副總經(jīng)理合同書
- 無勞動合同證明的獲取途徑分析
- 2024年承包魚塘合同范本
- 抵押短期借款合同格式
- 加工協(xié)議書撰寫要點(diǎn)
- 柴油發(fā)動機(jī)控制柜技術(shù)規(guī)格書
- 土地流轉(zhuǎn)合同補(bǔ)充協(xié)議2024年
- 建筑工程合同履約中的安全控制
- 業(yè)務(wù)經(jīng)理聘請合同
- 重慶建筑施工安全教育小程序
- 高邊坡專項(xiàng)施工方案 (需專家論證)
- 餐飲服務(wù)和管理說課名師優(yōu)質(zhì)課賽課一等獎市公開課獲獎?wù)n件
- DB21T 3314-2020 生物炭直接還田技術(shù)規(guī)程
- 涂漆檢驗(yàn)報(bào)告(面漆)
- (中職)化工總控工應(yīng)會技能基礎(chǔ)模塊1 化工生產(chǎn)準(zhǔn)備-1-化工生產(chǎn)過程認(rèn)知教學(xué)課件
- HPV感染與宮頸癌關(guān)系課件
- 小學(xué)主管后勤副校長崗位職責(zé)共3篇 學(xué)校后勤副校長崗位職責(zé)
- 以“政府績效與公眾信任”為主題撰寫一篇小論文6篇
- 捅馬蜂窩-完整版獲獎?wù)n件
- DB11T 1234-2022 生活垃圾焚燒處理能源消耗限額
評論
0/150
提交評論