2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖南省衡陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()

A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定

3.

4.

5.當(dāng)x→0時(shí),下列變量中為無(wú)窮小的是()。

A.lg|x|

B.

C.cotx

D.

6.

7.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c8.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

9.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

10.

11.

12.

13.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少

14.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

15.A.

B.

C.e-x

D.

16.

17.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-118.()。A.e-2

B.e-2/3

C.e2/3

D.e2

19.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為

A.2B.-2C.3D.-320.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)二、填空題(20題)21.

22.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.

23.

24.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分25.若f'(x0)=1,f(x0)=0,則26.

27.

28.

29.

30.

31.

32.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.33.微分方程y"=y的通解為_(kāi)_____.34.

35.

36.設(shè)y=e3x知,則y'_______。37.設(shè)=3,則a=________。

38.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。

39.

40.

三、計(jì)算題(20題)41.證明:42.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

44.

45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.47.求曲線在點(diǎn)(1,3)處的切線方程.48.49.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則50.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.

53.求微分方程y"-4y'+4y=e-2x的通解.

54.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.求微分方程的通解.57.

58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

60.

四、解答題(10題)61.

62.的面積A。

63.

64.

65.設(shè)函數(shù)y=xlnx,求y''.

66.67.

68.

69.將f(x)=1/3-x展開(kāi)為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。

70.

五、高等數(shù)學(xué)(0題)71.設(shè)

則當(dāng)n→∞時(shí),x,是__________變量。

六、解答題(0題)72.在曲線上求一點(diǎn)M(x,y),使圖9-1中陰影部分面積S1,S2之和S1+S2最小.

參考答案

1.C

2.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。

3.C

4.B

5.D

6.B

7.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

8.C

9.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

10.D解析:

11.D

12.D

13.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

14.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

15.A

16.D

17.C

18.B

19.C解析:

20.A

21.

22.

23.y=Cy=C解析:24.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

25.-126.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

27.

解析:28.2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

29.33解析:

30.

本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見(jiàn)的錯(cuò)誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

31.32.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

所給級(jí)數(shù)為不缺項(xiàng)情形.

可知收斂半徑,因此收斂區(qū)間為

(-1,1).

注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).

本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤.33.y'=C1e-x+C2ex

;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

將方程變形,化為y"-y=0,

特征方程為r2-1=0;

特征根為r1=-1,r2=1.

因此方程的通解為y=C1e-x+C2ex.34.本題考查的知識(shí)點(diǎn)為重要極限公式。

35.36.3e3x

37.

38.-1

39.22解析:

40.55解析:

41.

42.

43.

44.

45.

列表:

說(shuō)明

46.由二重積分物理意義知

47.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

48.

49.由等價(jià)無(wú)窮小量的定義可知

50.

51.函數(shù)的定義域?yàn)?/p>

注意

52.

53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

54.

55.

56.57.由一階線性微分方程通解公式有

58.

59.需求規(guī)律為Q=100ep-2.25p

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論