2023屆山東德州七中學九年級數(shù)學第一學期期末檢測試題含解析_第1頁
2023屆山東德州七中學九年級數(shù)學第一學期期末檢測試題含解析_第2頁
2023屆山東德州七中學九年級數(shù)學第一學期期末檢測試題含解析_第3頁
2023屆山東德州七中學九年級數(shù)學第一學期期末檢測試題含解析_第4頁
2023屆山東德州七中學九年級數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.拋物線y=﹣(x+2)2﹣3的頂點坐標是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)2.對于二次函數(shù),下列說法正確的是()A.圖象開口方向向下; B.圖象與y軸的交點坐標是(0,-3);C.圖象的頂點坐標為(1,-3); D.拋物線在x>-1的部分是上升的.3.如圖,AB是O的直徑,AB=4,C為的三等分點(更靠近A點),點P是O上一個動點,取弦AP的中點D,則線段CD的最大值為()A.2 B. C. D.4.如圖所示的中心對稱圖形中,對稱中心是()A. B. C. D.5.已知點在拋物線上,則點關(guān)于拋物線對稱軸的對稱點坐標為()A. B. C. D.6.在Rt△ABC中,∠C=900,AC=4,AB=5,則sinB的值是()A. B. C. D.7.某機械廠七月份生產(chǎn)零件50萬個,第三季度生產(chǎn)零件196萬個.設(shè)該廠八、九月份平均每月的增長率為x,那么x滿足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.下列各點中,在反比例函數(shù)圖象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)9.若關(guān)于x的一元二次方程有實數(shù)根,則實數(shù)k的取值范圍是()A. B. C.且 D.10.如圖,在4×4的網(wǎng)格中,點A,B,C,D,H均在網(wǎng)格的格點上,下面結(jié)論:①點H是△ABD的內(nèi)心②點H是△ABD的外心③點H是△BCD的外心④點H是△ADC的外心其中正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.若菱形的兩條對角線長分別是6㎝和8㎝,則該菱形的面積是㎝1.12.三角形兩邊長分別為3和6,第三邊的長是方程x2﹣13x+36=0的根,則該三角形的周長為_____.13.如圖,已知等邊的邊長為4,,且.連結(jié),并延長交于點,則線段的長度為__________.14.計算若,那么a2019+b2020=____________.15.用一個圓心角為的扇形作一個圓錐的側(cè)面,若這個圓錐的底面半徑恰好等于,則這個圓錐的母線長為_____.16.高為8米的旗桿在水平地面上的影子長為6米,同一時刻測得附近一個建筑物的影子長30米,則此建筑物的高度為_____米.17.把拋物線沿著軸向左平移3個單位得到的拋物線關(guān)系式是_________.18.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.三、解答題(共66分)19.(10分)某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.(1)按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)(2)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.20.(6分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD⊥DC于D,且AC平分∠DAB.延長DC交AB的延長線于點P.(1)求證:PC2=PA?PB;(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長.21.(6分)某景區(qū)檢票口有A、B、C、D共4個檢票通道.甲、乙兩人到該景區(qū)游玩,兩人分別從4個檢票通道中隨機選擇一個檢票.(1)甲選擇A檢票通道的概率是;(2)求甲乙兩人選擇的檢票通道恰好相同的概率.22.(8分)銳角中,,為邊上的高線,,兩動點分別在邊上滑動,且,以為邊向下作正方形(如圖1),設(shè)其邊長為.(1)當恰好落在邊上(如圖2)時,求;(2)正方形與公共部分的面積為時,求的值.23.(8分)周末,小馬和小聰想用所學的數(shù)學知識測量圖書館前小河的寬,測量時,他們選擇河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.24.(8分)小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱(此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系),當加熱到100℃時自動停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系,當水溫降至20C時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;(2)求圖中t的值;(3)若小明上午八點將飲水機在通電開機(此時飲水機中原有水的溫度為20℃后即外出散步,預計上午八點半散步回到家中,回到家時,他能喝到飲水機內(nèi)不低于30℃的水嗎?請說明你的理由.25.(10分)關(guān)于x的一元二次方程有兩個不相等的實數(shù)根.(1)求k的取值范圍.(2)請選擇一個k的負整數(shù)值,并求出方程的根.26.(10分)如圖,在△ABC中,BE平分∠ABC交AC于點E,過點E作ED∥BC交AB于點D.(1)求證:AE?BC=BD?AC;(2)如果=3,=2,DE=6,求BC的長.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】試題分析:∵拋物線y=﹣(x+2)2﹣3為拋物線解析式的頂點式,∴拋物線頂點坐標是(﹣2,﹣3).故選D.考點:二次函數(shù)的性質(zhì).2、D【解析】二次函數(shù)y=2(x+1)2-3的圖象開口向上,頂點坐標為(-1,-3),對稱軸為直線x=-1;當x=0時,y=-2,所以圖像與y軸的交點坐標是(0,-2);當x>-1時,y隨x的增大而增大,即拋物線在x>-1的部分是上升的,故選D.3、D【解析】取OA的中點Q,連接DQ,OD,CQ,根據(jù)條件可求得CQ長,再由垂徑定理得出OD⊥AP,由直角三角形斜邊中線等于斜邊一半求得QD長,根據(jù)當C,Q,D三點共線時,CD長最大求解.【詳解】解:如圖,取AO的中點Q,連接CQ,QD,OD,∵C為的三等分點,∴的度數(shù)為60°,∴∠AOC=60°,∵OA=OC,∴△AOC為等邊三角形,∵Q為OA的中點,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D為AP的中點,∴OD⊥AP,∵Q為OA的中點,∴DQ=,∴當D點CQ的延長線上時,即點C,Q,D三點共線時,CD長最大,最大值為.故選D【點睛】本題考查利用弧與圓心角的關(guān)系及垂徑定理求相關(guān)線段的長度,并且考查線段最大值問題,利用圓的綜合性質(zhì)是解答此題的關(guān)鍵.4、B【分析】直接利用中心對稱圖形的性質(zhì)得出答案.【詳解】解:如圖所示的中心對稱圖形中,對稱中心是O1.故選:B.【點睛】本題考查中心對稱圖形,解題關(guān)鍵是熟練掌握中心對稱圖形的性質(zhì).5、A【分析】先將點A代入拋物線的解析式中整理出一個關(guān)于a,b的等式,然后利用平方的非負性求出a,b的值,進而可求點A的坐標,然后求出拋物線的對稱軸即可得出答案.【詳解】∵點在拋物線上,∴,整理得,,解得,,.拋物線的對稱軸為,∴點關(guān)于拋物線對稱軸的對稱點坐標為.故選:A.【點睛】本題主要考查完全平方公式的應用、平方的非負性和二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.6、D【解析】試題分析:正弦的定義:正弦由題意得,故選D.考點:銳角三角函數(shù)的定義點評:本題屬于基礎(chǔ)應用題,只需學生熟練掌握正弦的定義,即可完成.7、C【詳解】試題分析:一般增長后的量=增長前的量×(1+增長率),如果該廠八、九月份平均每月的增長率為x,那么可以用x分別表示八、九月份的產(chǎn)量:八、九月份的產(chǎn)量分別為50(1+x)、50(1+x)2,從而根據(jù)題意得出方程:50+50(1+x)+50(1+x)2=1.故選C.8、A【分析】根據(jù)反比例函數(shù)的性質(zhì)可得:反比例函數(shù)圖像上的點滿足xy=3.【詳解】解:A、∵3×1=3,∴此點在反比例函數(shù)的圖象上,故A正確;

B、∵(-3)×1=-3≠3,∴此點不在反比例函數(shù)的圖象上,故B錯誤;C、∵,∴此點不在反比例函數(shù)的圖象上,故C錯誤;D、∵,∴此點不在反比例函數(shù)的圖象上,故D錯誤;故選A.9、C【分析】根據(jù)方程根的情況可以判定其根的判別式的取值范圍,進而可以得到關(guān)于k的不等式,解得即可,同時還應注意二次項系數(shù)不能為1.【詳解】∵關(guān)于x的一元二次方程有實數(shù)根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵關(guān)于x的一元二次方程kx2-2x+1=1中k≠1,故選:C.【點睛】本題考查了一元二次方程根的判別式,解題的關(guān)鍵是了解根的判別式如何決定一元二次方程根的情況.10、C【分析】先利用勾股定理計算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,則CB⊥AB,CD⊥AD,根據(jù)角平分線定理的逆定理可判斷點C不在∠BAD的角平分線上,則根據(jù)三角形內(nèi)心的定義可對①進行判斷;由于HA=HB=HC=HD=,則根據(jù)三角形外心的定義可對②③④進行判斷.【詳解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都為直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴點C不在∠BAD的角平分線上,∴點H不是△ABD的內(nèi)心,所以①錯誤;∵HA=HB=HC=HD=,∴點H是△ABD的外心,點H是△BCD的外心,點H是△ADC的外心,所以②③④正確.故選:C.【點睛】本題考查了三角形的內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.也考查了三角形的外心和勾股定理.二、填空題(每小題3分,共24分)11、14【解析】已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.解:根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6×8=14cm1,故答案為14.12、13【分析】利用因式分解法解方程,得到,,再利用三角形的三邊關(guān)系進行判斷,然后計算三角形的周長即可.【詳解】解:∵,∴,∴,,∵,∴不符合題意,舍去;∴三角形的周長為:;故答案為:13.【點睛】本題考查了解一元二次方程,以及三角形的三邊關(guān)系的應用,解題的關(guān)鍵是正確求出第三邊的長度,以及掌握三角形的三邊關(guān)系.13、1【分析】作CF⊥AB,根據(jù)等邊三角形的性質(zhì)求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,設(shè)BE為x,再根據(jù)對應線段成比例即可求解.【詳解】作CF⊥AB,垂足為F,∵△ABC為等邊三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,設(shè)BE為x,∴,即解得x=1故填:1.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的根據(jù)是根據(jù)題意構(gòu)造相似三角形進行求解.14、0【分析】根據(jù)二次根式和絕對值的非負數(shù)性質(zhì)可求出a、b的值,進而可得答案.【詳解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案為:0【點睛】本題考查二次根式和絕對值的非負數(shù)性質(zhì),如果幾個非負數(shù)的和為0,那么這幾個非負數(shù)分別為0;熟練掌握非負數(shù)性質(zhì)是解題關(guān)鍵.15、12【解析】根據(jù)扇形的弧長等于圓錐底面圓的周長列式進行求解即可.【詳解】設(shè)這個圓錐的母線長為,依題意,有:,解得:,故答案為:12.【點睛】本題考查了圓錐的運算,正確把握圓錐側(cè)面展開圖的扇形的弧長與底面圓的周長間的關(guān)系是解題的關(guān)鍵.16、40【分析】根據(jù)投影的實際應用,在同一時刻太陽光線平行,不同物體的實際高度與影長之比相等建立方程,可求出答案.【詳解】解:設(shè)建筑物的的高為x米,可得方程:,解得:=40答:此建筑物的高度為40米.故答案是:40.【點睛】本題主要考察投影中的實際應用,正確理解相似三角形在平行投影中的應用是解題的關(guān)鍵.17、【分析】先求出平移后的拋物線的頂點坐標,再利用頂點式,寫出拋物線解析式,即可.【詳解】由題意知:拋物線的頂點坐標是(0,1).∵拋物線向左平移3個單位∴頂點坐標變?yōu)椋?3,1).∴得到的拋物線關(guān)系式是.故答案為.【點睛】本題主要考查了二次函數(shù)圖像與幾何變換,正確掌握二次函數(shù)圖像與幾何變換是解題的關(guān)鍵.18、1【分析】根據(jù)垂徑定理求得BD,然后根據(jù)勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關(guān)鍵.三、解答題(共66分)19、(1)不可能事件;(2).【詳解】試題分析:(1)根據(jù)隨機事件的概念即可得“小李同學在該天早餐得到兩個油餅”是不可能事件;(2)根據(jù)題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學在該天早餐得到兩個油餅”是不可能事件;(2)樹狀圖法即小張同學得到豬肉包和油餅的概率為.考點:列表法與樹狀圖法.20、(1)見解析;(2)PC=1.【分析】(1)證明△PAC∽△PCB,可得,即可證明PC2=PA?PB;(2)若3AC=4BC,則,由(1)可求線段PC的長.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°.∵AD⊥DC于D,且AC平分∠DAB,∴∠PDA=90°,∠DAC=∠BAC.∵∠PCA=∠PDA+∠DAC,∠PBC=∠ACB+∠BAC,∴∠PCA=∠PBC.∵∠BPC=∠CPA,∴△PAC∽△PCB,∴,∴PC2=PA?PB;(2)∵3AC=4BC,∴.設(shè)PC=4k,則PB=3k,PA=3k+7,∴(4k)2=3k(3k+7),∴k=3或k=0(舍去),∴PC=1.【點睛】本題考查了三角形相似的判定與性質(zhì),圓周角定理,解一元二次方程等知識,熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)通過列表展示所有9種等可能結(jié)果,再找出通道不同的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)解:一名游客經(jīng)過此檢票口時,選擇A通道通過的概率=,故答案為:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16種可能結(jié)果,并且它們的出現(xiàn)是等可能的,“甲、乙兩人選擇相同檢票通道”記為事件E,它的發(fā)生有4種可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.22、(1);(2)或1.【解析】(1)根據(jù)已知條件,求出AD的值,再由△AMN∽△ABC,確定比例關(guān)系求出x的值即可;(2)當正方形與公共部分的面積為時,可分兩種情況,一是當在△ABC的內(nèi)部,二是當在△ABC的外部,當當在△ABC的外部時,根據(jù)相似,表達出重疊部分面積,再列出方程,解出x的值即可.【詳解】解:(1)∵,為邊上的高線,,∴∴AD=1,設(shè)AD交MN于點H,∵MN∥BC,∴△AMN∽△ABC,∴,即,解得,∴當恰好落在邊上時,(2)①當在△ABC的內(nèi)部時,正方形與公共部分的面積即為正方形的面積,∴,解得②當在△ABC的外部時,如下圖所示,PM交BC于點E,QN交BC于點F,AD交MN于點H,設(shè)HD=a,則AH=1-a,由得,解得∴矩形MEFN的面積為即解得(舍去),綜上:正方形與公共部分的面積為時,或1.【點睛】本題主要考查了相似三角形的對應高的比等于對應邊的比的性質(zhì),正方形的四邊相等的性質(zhì)以及方程思想,列出比例式是解題的關(guān)鍵.23、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此證明△ABC∽△ADE,得到,將數(shù)值代入即可求得AB.【詳解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴AB=20,即河寬為20米.【點睛】此題考查相似三角形的實際應用,解決河寬問題.24、(1)y=10x+1;(2)t的值為2;(3)不能,理由見解析【分析】(1)根據(jù)一次函數(shù)圖象上兩點的坐標,利用待定系數(shù)法即可求出當0≤x≤8時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;(2)由點(8,100),利用待定系數(shù)法即可求出當8≤x≤t時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式,再將y=1代入該函數(shù)關(guān)系式中求出x值即可;(3)將x=30代入反比例函數(shù)關(guān)系式中求出y值,再與30比較后即可得出結(jié)論.【詳解】(1)當0≤x≤8時,設(shè)水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式為y=kx+b(k≠0).將(0,1)、(8,100)代入y=kx+b中,得:,解得:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論