




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
EstimatingCommunityParameters
Communityecologistsfaceaspecialsetofstatisticalproblemsinattemptingtocharacterizeandmeasurethepropertiesofcommunitiesofplantsandanimals.Onecommunityparameterissimilarity.Speciesdiversityisanotheroneofthemostobviousandcharacteristicfeaturesofacommunity.
1.MeasurementofSimilarity2.SpeciesDiversityMeasures第四章群落相似性和聚類分析第一節(jié)相似性測量在群落研究中,生態(tài)學家經(jīng)常會得到某一群落的物種組成和數(shù)量。例如在保護區(qū)研究中,我們經(jīng)常要回答的問題是這幾個保護區(qū)他們在區(qū)系組成上有什么不同?哪些更相似,哪些差異較明顯?要回答群落分類的這樣復雜問題,我們先以測量兩個群落的相似性著手。4.1.1BinaryCoefficients4.1.2DistanceCoefficients4.1.3CorrelationCoefficients4.1.4Morisita’sIndexofSimilarityBinaryCoefficientsThesimplestsimilaritymeasuresdealonlywithpresence/absencedata.Thebasicdataforcalculatingbinary(orassociation)coefficientsisa2×2table.SampleANo.ofspeciespresentNo.ofspeciesabsentabcdSampleBNo.ofspeciespresentNo.ofspeciesabsentWherea=NumberofspeciesinsampleAandsampleB(jointoccurrences)
b=NumberofspeciesinsampleBbutnotinsampleAc=NumberofspeciesinsampleAbutnotinsampleBd=Numberofspeciesabsentinbothsamples(zeromatches)
where=Jaccard’ssimilaritycoefficient=Asdefinedaboveinpresence/absencematrix
BinaryCoefficientsThereisconsiderabledisagreementintheliteratureaboutwhetherdisabiologicallymeaningfulnumber.Therearemorethan20binarysimilaritymeasuresavailableintheliterature(CheethamandHazel1969),andtheyhavebeenreviewedbyCliffordandStephenson(1975)andbyRomesburg(1984).CoefficientofJaccard
ThecoefficientofJaccardisexpressedasfollows:where=Euclideandistancebetweensamplesand=Numberofindividuals(orbiomass)ofspeciesinsample=Numberofindividuals(orbiomass)ofspeciesinsample=TotalnumberofspeciesEuclideanDistance
ThisdistanceisformallycalledEuclidiandistanceandcouldbemeasuredfromFigure11.2witharuler.Moreformally.Euclideandistanceincreaseswiththenumberofspeciesinthesamples,andtocompensateforthis,theaveragedistanceisusuallycalculated:where=AverageEuclideandistancebetweensamplesjandk
=Euclideandistance(calculatedinequation11.5)
n=NumberofspeciesinsamplesBothEuclideandistanceandaverageEuclideandistancevaryfrom0toinfinity;thelargerthedistance,thelesssimilarthetwocommunities.OneofthesimplestmetricfunctionsiscalledtheManhattan,orcity-block,metric:where=Manhattandistancebetweensamplesjandk=Numberofindividualsinspeciesiineachsamplejandkn=NumberofspeciesinsamplesThisfunctionmeasuresdistancesasthelengthofthepathyouhavetowalkinacity—hencethename.TwomeasuresbasedontheManhattanmetrichavebeenusedwidelyinplantecologytomeasuresimilarity.Bray-CurtisMeasure
BrayandCurtis(1957)standardizedtheManhattanmetricsothatithasarangefrom0(similar)to1(dissimilar).whereB=Bray-Curtismeasureofdissimilarity=Numberofindividualsinspeciesiineachsample(j,k)
n=NumberofspeciesinsamplesSomeauthors(e.g.,Wolda1981)prefertodefinethisasameasureofsimilaritybyusingthecomplementoftheBray-Curtismeasure(1.0–B).TheBray-Curtismeasureisdominatedbytheabundantspecies,sothatrarespeciesaddverylittletothevalueofthecoefficient.CanberraMetric
LanceandWilliams(1967)standardizedtheManhattanmetricoverspeciesinsteadofindividualsandinventedtheCanberrametric:whereC=Canberrametriccoefficientofdissimilaritybetweensamplesjandk
n=Numberofspeciesinsamples=NumberofindividualsinspeciesIinthesample(j,k)TheCanberrametricisnotaffectedasmuchbythemoreabundantspeciesinthecommunity,andthusdiffersfromtheBray-Curtismeasure.TheCanberrametrichastwoproblems.Itisundefinedwhentherearespeciesthatareabsentfrombothcommunitysamples,andconsequentlymissingspeciescancontributenoinformationandmustbeignored.Whennoindividualsofaspeciesarepresentinonesample,butarepresentinthesecondsample,theindexisatmaximumvalue(CliffordandStephenson1975).Toavoidthissecondproblem,manyecologistsreplaceallzerovaluesbyasmallnumber(like0.1)whendoingthesummations.TheCanberrametricrangesfrom0to1.0and,liketheBray-Curtismeasure,canbeconvertedintoasimilaritymeasurebyusingthecomplement(1.0–C).BoththeBray-CurtismeasureandtheCanberrametricmeasurearestronglyaffectedbysamplesize(Wolda1981).
4.1.3CorrelationCoefficients
Onefrequentlyusedapproachtothemeasurementofsimilarityistousecorrelationcoefficientsofthestandardkinddescribedineverystatisticsbook(e.g.,SokalandRohlf1995)Armstrong(1977)trappedninespeciesofsmallmammalsintheRockyMountainsofColoradoandobtainedrelativeabundance(percentageoftotalcatch)estimatesfortwohabitattypes(“communities”)asfollows:例:SmallmammalspeciesHabitattypeScSvEmPmCgPiMlMmZpWillowoverstory7058504031535Nooverstory1011202098114644EuclideanDistanceFromequation(11.5),AverageEuclideandistanceBray-CurtisMeasureTouseasameasureofsimilaritycalculatethecomplementofB:CanberrametricTousetheCanberrametricasameasureofsimilaritycalculateitscomplement:例
EFFECTSOFADDITIVEANDPROPORTIONALCHANGESINSPECIESABUNDANCESONDISTANCEMEASURESANDCORRELATIONCOEFFICIENTS.HypotheticalComparisonofNumberofIndividualsinTwoCommunitieswithFourSpecies
Species1234CommunityA5025105CommunityB40302010CommunityB1(proportionalchange,2×)80604020CommunityB2(additivechange,+30)70605040
相關(guān)系數(shù)測度有人們希望的特點:當兩個群落的樣本之間是成比例的,或可加的差異,那么該系數(shù)對差異是極不敏感的。而所有距離測度對這些差異卻很敏感。而相關(guān)系數(shù)測度的缺點則是強烈受樣本大小的影響。特別是在高多樣性的群落中更是這樣。SamplescomparedA–BA–B1A–B2AverageEuclideandistance7.9028.5033.35Bray-Curtismeasure0.160.380.42Canberrametric0.220.460.51Pearsoncorrelationcoefficient0.960.960.96Spearmanrankcorrelationcoefficient1.001.001.00Conclusion:Ifyouwishyourmeasureofsimilaritytobeindependentofproportionaloradditivechangesinspeciesabundances,youshouldnotuseadistancecoefficienttomeasuresimilarity.Morisita’sIndexofSimilarity
ThismeasurewasfirstproposedbyMorisita(1959)tomeasuresimilaritybetweentwocommunities.ItshouldnotbeconfusedwithMorisita’sindexofdispersion(Section6.4.4).ItiscalculatedasProbabilitythatanindividualdrawnfromsamplejandonedrawnfromsamplekwillbelongtothesamespeciesProbabilitythattwoindividualdrawnfromeitherjorkwillbelongtothesamespeciesXij=numberofindividualsofspeciesiinsamplejNj=TotelnumberofindividualsinsamplejTheMorisitaindexvariesfrom0(nosimilarity)toabout1.0(completesimilarity).TheMorisitaindexwasfromulatedforcountsofindividualsandnotforotherabundanceestimatesbasedonbiomass,productivity,orcover.Horn(1966)proposedasimplifiedMorisitaindexinwhichallthe(-1)termsinequations(11.13)and(11.14)areignored:whereSimplifiedMorisitaindexofsimilarity(Horn1966)Thisformulaisappropriatewhentheoriginaldataareexpressedasproportionsratherthannumbersofindividualsandshouldbeusedwhentheoriginaldataarenotnumbersbutbiomass,cover,orproductivity.TheMorisitaindexofsimilarityisnearlyindependentofsamplesize,exceptforsamplesofverysmallsize.Morisita(1959)didextensivesimulationexperimentstoshowthis,andtheseresultswereconfirmedbyWolda(1981),whorecommendedMorisita’sindexasthebestoverallmeasureofsimilarityforecologicaluse.H.Wolda1981SimilarityIndices,SampleSizeandDiversityOecologia50:296-302第二節(jié)聚類分析聚類分析是研究分類問題的一種多元統(tǒng)計方法。4.2.1類與類之間的距離4.2.1.1最短距離法設(shè)類與類中兩個最近元素之間的距離為與類之間的最短距離。4.2.1.2最長距離法4.2.1.3類平均法[unweigtedpair-groupmethodusingarithmeticaverages,UPGMA(SneathandSokal1973;Raneslurg1984)]設(shè)類與類中任意兩個元素之間距離的平均值為兩類之間的類平均距離。為與中任意兩個元素之間距離。為中元素個數(shù)。為中元素個數(shù)。4.2.2聚類過程(1)從距離最短的一對樣本開始,聚成第一類。(2)尋找第二對距離最短的樣本,或者是于已形成的類最短的樣本,形成新的一類。(3)重復步驟(2),直到所有的樣本形成一大類。例
MATRIXOFSIMILARITYCOEFFICIENTSFORTHESEABIRDDATAINTABLE11.5.ISLANDSAREPRESENTEDINSAMEORDERASINTABLE11.5a
CHPLICINSCLCTSISPISGICH1.00.880.990.660.770.750.360.510.49PLI1.00.880.620.700.710.360.510.49CI1.00.660.780.750.360.500.48NS1.00.730.640.280.530.50CL1.00.760.290.510.49CT1.00.340.460.45SI1.00.190.20SPI1.00.80SGI1.0
aThecomplementoftheCanberrametric(1.0–C)isusedastheindexofsimilarity.Notethatthematrixissymmetricalaboutthediagonal.4.2.3ClassificationClassificationisoftenthefinalgoalofcommunityanalyses,sothatecologistscanassignnamestoclassesorgroups.Classificationisespeciallyimportantinappliedecologyandconservation.Ecologistshaveclassifiedplantcommunitiesonthebasisofmanydifferentcharacteristics,andsincetheadventofcomputers,therehasbeenagrowingliteratureonobjective,quantitativemethodsof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度商業(yè)地產(chǎn)租賃合同簽訂流程注意事項
- 2025-2030年中國鉻鹽市場運行態(tài)勢及發(fā)展戰(zhàn)略研究報告
- 2025-2030年中國針織服裝市場市場運行動態(tài)及投資戰(zhàn)略研究報告
- 2025-2030年中國采血器市場發(fā)展狀況及前景趨勢分析報告
- 2025-2030年中國調(diào)味香料市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國補鈣保健品行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國自動高壓蒸汽滅菌器市場發(fā)展狀況及前景趨勢分析報告
- 2025-2030年中國羥基氧化鈷市場發(fā)展趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國紙品文具行業(yè)運行趨勢及發(fā)展前景分析報告
- 2025-2030年中國石料開采市場十三五規(guī)劃及發(fā)展策略分析報告
- 檢體診斷-頭頸部檢查(診斷學課件)
- 煤礦提升機作業(yè)理論考試參考題庫(200題)
- 新人教版七至九年級英語單詞表 漢譯英(含音標)
- 侯馬北車輛段2023年運用機考復習題-曲沃作業(yè)場
- 手術(shù)室停電和突然停電應(yīng)急預案PPT演示課件
- 職業(yè)病危害告知卡(油漆)
- 抗震支吊架安裝檢驗批
- 橋梁各部位加固及橋梁維修技術(shù)總結(jié)
- GB/T 40336-2021無損檢測泄漏檢測氣體參考漏孔的校準
- 馬工程教材《公共財政概論》PPT-第十一章 政府預算
- FZ/T 01085-2009熱熔粘合襯剝離強力試驗方法
評論
0/150
提交評論