第4章 群落相似性和聚類分析_第1頁
第4章 群落相似性和聚類分析_第2頁
第4章 群落相似性和聚類分析_第3頁
第4章 群落相似性和聚類分析_第4頁
第4章 群落相似性和聚類分析_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

EstimatingCommunityParameters

Communityecologistsfaceaspecialsetofstatisticalproblemsinattemptingtocharacterizeandmeasurethepropertiesofcommunitiesofplantsandanimals.Onecommunityparameterissimilarity.Speciesdiversityisanotheroneofthemostobviousandcharacteristicfeaturesofacommunity.

1.MeasurementofSimilarity2.SpeciesDiversityMeasures第四章群落相似性和聚類分析第一節(jié)相似性測量在群落研究中,生態(tài)學家經(jīng)常會得到某一群落的物種組成和數(shù)量。例如在保護區(qū)研究中,我們經(jīng)常要回答的問題是這幾個保護區(qū)他們在區(qū)系組成上有什么不同?哪些更相似,哪些差異較明顯?要回答群落分類的這樣復雜問題,我們先以測量兩個群落的相似性著手。4.1.1BinaryCoefficients4.1.2DistanceCoefficients4.1.3CorrelationCoefficients4.1.4Morisita’sIndexofSimilarityBinaryCoefficientsThesimplestsimilaritymeasuresdealonlywithpresence/absencedata.Thebasicdataforcalculatingbinary(orassociation)coefficientsisa2×2table.SampleANo.ofspeciespresentNo.ofspeciesabsentabcdSampleBNo.ofspeciespresentNo.ofspeciesabsentWherea=NumberofspeciesinsampleAandsampleB(jointoccurrences)

b=NumberofspeciesinsampleBbutnotinsampleAc=NumberofspeciesinsampleAbutnotinsampleBd=Numberofspeciesabsentinbothsamples(zeromatches)

where=Jaccard’ssimilaritycoefficient=Asdefinedaboveinpresence/absencematrix

BinaryCoefficientsThereisconsiderabledisagreementintheliteratureaboutwhetherdisabiologicallymeaningfulnumber.Therearemorethan20binarysimilaritymeasuresavailableintheliterature(CheethamandHazel1969),andtheyhavebeenreviewedbyCliffordandStephenson(1975)andbyRomesburg(1984).CoefficientofJaccard

ThecoefficientofJaccardisexpressedasfollows:where=Euclideandistancebetweensamplesand=Numberofindividuals(orbiomass)ofspeciesinsample=Numberofindividuals(orbiomass)ofspeciesinsample=TotalnumberofspeciesEuclideanDistance

ThisdistanceisformallycalledEuclidiandistanceandcouldbemeasuredfromFigure11.2witharuler.Moreformally.Euclideandistanceincreaseswiththenumberofspeciesinthesamples,andtocompensateforthis,theaveragedistanceisusuallycalculated:where=AverageEuclideandistancebetweensamplesjandk

=Euclideandistance(calculatedinequation11.5)

n=NumberofspeciesinsamplesBothEuclideandistanceandaverageEuclideandistancevaryfrom0toinfinity;thelargerthedistance,thelesssimilarthetwocommunities.OneofthesimplestmetricfunctionsiscalledtheManhattan,orcity-block,metric:where=Manhattandistancebetweensamplesjandk=Numberofindividualsinspeciesiineachsamplejandkn=NumberofspeciesinsamplesThisfunctionmeasuresdistancesasthelengthofthepathyouhavetowalkinacity—hencethename.TwomeasuresbasedontheManhattanmetrichavebeenusedwidelyinplantecologytomeasuresimilarity.Bray-CurtisMeasure

BrayandCurtis(1957)standardizedtheManhattanmetricsothatithasarangefrom0(similar)to1(dissimilar).whereB=Bray-Curtismeasureofdissimilarity=Numberofindividualsinspeciesiineachsample(j,k)

n=NumberofspeciesinsamplesSomeauthors(e.g.,Wolda1981)prefertodefinethisasameasureofsimilaritybyusingthecomplementoftheBray-Curtismeasure(1.0–B).TheBray-Curtismeasureisdominatedbytheabundantspecies,sothatrarespeciesaddverylittletothevalueofthecoefficient.CanberraMetric

LanceandWilliams(1967)standardizedtheManhattanmetricoverspeciesinsteadofindividualsandinventedtheCanberrametric:whereC=Canberrametriccoefficientofdissimilaritybetweensamplesjandk

n=Numberofspeciesinsamples=NumberofindividualsinspeciesIinthesample(j,k)TheCanberrametricisnotaffectedasmuchbythemoreabundantspeciesinthecommunity,andthusdiffersfromtheBray-Curtismeasure.TheCanberrametrichastwoproblems.Itisundefinedwhentherearespeciesthatareabsentfrombothcommunitysamples,andconsequentlymissingspeciescancontributenoinformationandmustbeignored.Whennoindividualsofaspeciesarepresentinonesample,butarepresentinthesecondsample,theindexisatmaximumvalue(CliffordandStephenson1975).Toavoidthissecondproblem,manyecologistsreplaceallzerovaluesbyasmallnumber(like0.1)whendoingthesummations.TheCanberrametricrangesfrom0to1.0and,liketheBray-Curtismeasure,canbeconvertedintoasimilaritymeasurebyusingthecomplement(1.0–C).BoththeBray-CurtismeasureandtheCanberrametricmeasurearestronglyaffectedbysamplesize(Wolda1981).

4.1.3CorrelationCoefficients

Onefrequentlyusedapproachtothemeasurementofsimilarityistousecorrelationcoefficientsofthestandardkinddescribedineverystatisticsbook(e.g.,SokalandRohlf1995)Armstrong(1977)trappedninespeciesofsmallmammalsintheRockyMountainsofColoradoandobtainedrelativeabundance(percentageoftotalcatch)estimatesfortwohabitattypes(“communities”)asfollows:例:SmallmammalspeciesHabitattypeScSvEmPmCgPiMlMmZpWillowoverstory7058504031535Nooverstory1011202098114644EuclideanDistanceFromequation(11.5),AverageEuclideandistanceBray-CurtisMeasureTouseasameasureofsimilaritycalculatethecomplementofB:CanberrametricTousetheCanberrametricasameasureofsimilaritycalculateitscomplement:例

EFFECTSOFADDITIVEANDPROPORTIONALCHANGESINSPECIESABUNDANCESONDISTANCEMEASURESANDCORRELATIONCOEFFICIENTS.HypotheticalComparisonofNumberofIndividualsinTwoCommunitieswithFourSpecies

Species1234CommunityA5025105CommunityB40302010CommunityB1(proportionalchange,2×)80604020CommunityB2(additivechange,+30)70605040

相關(guān)系數(shù)測度有人們希望的特點:當兩個群落的樣本之間是成比例的,或可加的差異,那么該系數(shù)對差異是極不敏感的。而所有距離測度對這些差異卻很敏感。而相關(guān)系數(shù)測度的缺點則是強烈受樣本大小的影響。特別是在高多樣性的群落中更是這樣。SamplescomparedA–BA–B1A–B2AverageEuclideandistance7.9028.5033.35Bray-Curtismeasure0.160.380.42Canberrametric0.220.460.51Pearsoncorrelationcoefficient0.960.960.96Spearmanrankcorrelationcoefficient1.001.001.00Conclusion:Ifyouwishyourmeasureofsimilaritytobeindependentofproportionaloradditivechangesinspeciesabundances,youshouldnotuseadistancecoefficienttomeasuresimilarity.Morisita’sIndexofSimilarity

ThismeasurewasfirstproposedbyMorisita(1959)tomeasuresimilaritybetweentwocommunities.ItshouldnotbeconfusedwithMorisita’sindexofdispersion(Section6.4.4).ItiscalculatedasProbabilitythatanindividualdrawnfromsamplejandonedrawnfromsamplekwillbelongtothesamespeciesProbabilitythattwoindividualdrawnfromeitherjorkwillbelongtothesamespeciesXij=numberofindividualsofspeciesiinsamplejNj=TotelnumberofindividualsinsamplejTheMorisitaindexvariesfrom0(nosimilarity)toabout1.0(completesimilarity).TheMorisitaindexwasfromulatedforcountsofindividualsandnotforotherabundanceestimatesbasedonbiomass,productivity,orcover.Horn(1966)proposedasimplifiedMorisitaindexinwhichallthe(-1)termsinequations(11.13)and(11.14)areignored:whereSimplifiedMorisitaindexofsimilarity(Horn1966)Thisformulaisappropriatewhentheoriginaldataareexpressedasproportionsratherthannumbersofindividualsandshouldbeusedwhentheoriginaldataarenotnumbersbutbiomass,cover,orproductivity.TheMorisitaindexofsimilarityisnearlyindependentofsamplesize,exceptforsamplesofverysmallsize.Morisita(1959)didextensivesimulationexperimentstoshowthis,andtheseresultswereconfirmedbyWolda(1981),whorecommendedMorisita’sindexasthebestoverallmeasureofsimilarityforecologicaluse.H.Wolda1981SimilarityIndices,SampleSizeandDiversityOecologia50:296-302第二節(jié)聚類分析聚類分析是研究分類問題的一種多元統(tǒng)計方法。4.2.1類與類之間的距離4.2.1.1最短距離法設(shè)類與類中兩個最近元素之間的距離為與類之間的最短距離。4.2.1.2最長距離法4.2.1.3類平均法[unweigtedpair-groupmethodusingarithmeticaverages,UPGMA(SneathandSokal1973;Raneslurg1984)]設(shè)類與類中任意兩個元素之間距離的平均值為兩類之間的類平均距離。為與中任意兩個元素之間距離。為中元素個數(shù)。為中元素個數(shù)。4.2.2聚類過程(1)從距離最短的一對樣本開始,聚成第一類。(2)尋找第二對距離最短的樣本,或者是于已形成的類最短的樣本,形成新的一類。(3)重復步驟(2),直到所有的樣本形成一大類。例

MATRIXOFSIMILARITYCOEFFICIENTSFORTHESEABIRDDATAINTABLE11.5.ISLANDSAREPRESENTEDINSAMEORDERASINTABLE11.5a

CHPLICINSCLCTSISPISGICH1.00.880.990.660.770.750.360.510.49PLI1.00.880.620.700.710.360.510.49CI1.00.660.780.750.360.500.48NS1.00.730.640.280.530.50CL1.00.760.290.510.49CT1.00.340.460.45SI1.00.190.20SPI1.00.80SGI1.0

aThecomplementoftheCanberrametric(1.0–C)isusedastheindexofsimilarity.Notethatthematrixissymmetricalaboutthediagonal.4.2.3ClassificationClassificationisoftenthefinalgoalofcommunityanalyses,sothatecologistscanassignnamestoclassesorgroups.Classificationisespeciallyimportantinappliedecologyandconservation.Ecologistshaveclassifiedplantcommunitiesonthebasisofmanydifferentcharacteristics,andsincetheadventofcomputers,therehasbeenagrowingliteratureonobjective,quantitativemethodsof

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論