2023屆數(shù)學(xué)二輪復(fù)習(xí)講練測:專題06 一網(wǎng)打盡外接球與內(nèi)切球問題(精講精練)(原卷版)_第1頁
2023屆數(shù)學(xué)二輪復(fù)習(xí)講練測:專題06 一網(wǎng)打盡外接球與內(nèi)切球問題(精講精練)(原卷版)_第2頁
2023屆數(shù)學(xué)二輪復(fù)習(xí)講練測:專題06 一網(wǎng)打盡外接球與內(nèi)切球問題(精講精練)(原卷版)_第3頁
2023屆數(shù)學(xué)二輪復(fù)習(xí)講練測:專題06 一網(wǎng)打盡外接球與內(nèi)切球問題(精講精練)(原卷版)_第4頁
2023屆數(shù)學(xué)二輪復(fù)習(xí)講練測:專題06 一網(wǎng)打盡外接球與內(nèi)切球問題(精講精練)(原卷版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題06一網(wǎng)打盡外接球與內(nèi)切球問題【命題規(guī)律】縱觀近幾年高考對(duì)于組合體的考查,與球相關(guān)的外接與內(nèi)切問題是高考命題的熱點(diǎn)之一.高考命題小題綜合化傾向尤為明顯,要求學(xué)生有較強(qiáng)的空間想象能力和準(zhǔn)確的計(jì)算能力,才能順利解答.從近幾年全國高考命題來看,這部分內(nèi)容以選擇題、填空題為主,大題很少見,此部分是重點(diǎn)也是一個(gè)難點(diǎn),屬于中等難度.【核心考點(diǎn)目錄】核心考點(diǎn)一:正方體、長方體外接球核心考點(diǎn)二:正四面體外接球核心考點(diǎn)三:對(duì)棱相等的三棱錐外接球核心考點(diǎn)四:直棱柱外接球核心考點(diǎn)五:直棱錐外接球核心考點(diǎn)六:正棱錐與側(cè)棱相等模型核心考點(diǎn)七:側(cè)棱為外接球直徑模型核心考點(diǎn)八:共斜邊拼接模型核心考點(diǎn)九:垂面模型核心考點(diǎn)十:二面角模型核心考點(diǎn)十一:坐標(biāo)法核心考點(diǎn)十二:圓錐圓柱圓臺(tái)模型核心考點(diǎn)十三:錐體內(nèi)切球核心考點(diǎn)十四:棱切球【真題回歸】1.(2022·全國·高考真題(文))已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為(

)A. B. C. D.2.(2021·全國·高考真題(理))已知A,B,C是半徑為1的球O的球面上的三個(gè)點(diǎn),且,則三棱錐的體積為(

)A. B. C. D.3.(2022·全國·高考真題)已知正三棱臺(tái)的高為1,上、下底面邊長分別為和,其頂點(diǎn)都在同一球面上,則該球的表面積為(

)A. B. C. D.4.(2022·全國·高考真題)已知正四棱錐的側(cè)棱長為l,其各頂點(diǎn)都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是(

)A. B. C. D.5.(2020·全國·高考真題(理))已知為球的球面上的三個(gè)點(diǎn),⊙為的外接圓,若⊙的面積為,,則球的表面積為(

)A. B. C. D.6.(2020·全國·高考真題(理))已知△ABC是面積為的等邊三角形,且其頂點(diǎn)都在球O的球面上.若球O的表面積為16π,則O到平面ABC的距離為(

)A. B. C.1 D.【方法技巧與總結(jié)】1、補(bǔ)成長方體(1)若三棱錐的三條側(cè)棱兩兩互相垂直,則可將其放入某個(gè)長方體內(nèi),如圖1所示.(2)若三棱錐的四個(gè)面均是直角三角形,則此時(shí)可構(gòu)造長方體,如圖2所示.(3)正四面體可以補(bǔ)形為正方體且正方體的棱長,如圖3所示.(4)若三棱錐的對(duì)棱兩兩相等,則可將其放入某個(gè)長方體內(nèi),如圖4所示圖1圖2圖3圖4【核心考點(diǎn)】核心考點(diǎn)一:正方體、長方體外接球【規(guī)律方法】1、正方體的外接球的球心為其體對(duì)角線的中點(diǎn),半徑為體對(duì)角線長的一半.2、長方體的外接球的球心為其體對(duì)角線的中點(diǎn),半徑為體對(duì)角線長的一半.【典型例題】例1.(2023·全國·高三專題練習(xí))已知正方體外接球的體積是,那么正方體的體對(duì)角線等于(

)A. B.4 C. D..例2.(2022·陜西西安·模擬預(yù)測(文))長方體的過一個(gè)頂點(diǎn)的三條棱長分別是2,4,4,則該長方體外接球的表面積為(

)A. B. C. D.例3.(2022·貴州黔南·高三開學(xué)考試(理))自2015年以來,貴陽市著力建設(shè)“千園之城”,構(gòu)建貼近生活、服務(wù)群眾的生態(tài)公園體系,著力將“城市中的公園”升級(jí)為“公園中的城市”.截至目前,貴陽市公園數(shù)量累計(jì)達(dá)到1025個(gè).下圖為貴陽市某公園供游人休息的石凳,它可以看做是一個(gè)正方體截去八個(gè)一樣的四面體得到的,如果被截正方體的的棱長為,則石凳所對(duì)應(yīng)幾何體的外接球的表面積為________.核心考點(diǎn)二:正四面體外接球【規(guī)律方法】如圖,設(shè)正四面體的的棱長為,將其放入正方體中,則正方體的棱長為,顯然正四面體和正方體有相同的外接球.正方體外接球半徑為,即正四面體外接球半徑為.【典型例題】例4.(2022·黑龍江·哈九中模擬預(yù)測(理))已知正四面體外接球表面積為,則該正四面體棱長為______;若為平面內(nèi)一動(dòng)點(diǎn),且,則最小值為______.例5.(2022·江蘇南京·高三開學(xué)考試)已知一個(gè)正四面體的棱長為2,則其外接球與以其一個(gè)頂點(diǎn)為球心,1為半徑的球面所形成的交線的長度為___________.例6.(2022·福建·福州三中模擬預(yù)測)表面積為的正四面體的外接球的表面積為(

)A. B. C. D.核心考點(diǎn)三:對(duì)棱相等的三棱錐外接球【規(guī)律方法】四面體中,,,,這種四面體叫做對(duì)棱相等四面體,可以通過構(gòu)造長方體來解決這類問題.如圖,設(shè)長方體的長、寬、高分別為,則,三式相加可得而顯然四面體和長方體有相同的外接球,設(shè)外接球半徑為,則,所以.【典型例題】例7.(2022·全國·高三專題練習(xí))在四面體中,,,,則其外接球的表面積為___________.例8.(2022·全國·高三專題練習(xí))已知四面體中,,,,若該四面體的各個(gè)頂點(diǎn)都在同一球面上,則此球的表面積為(

)A. B. C. D.例9.(2020·全國·模擬預(yù)測(文))在三棱錐中,若,,,其外接球的表面積為(

)A. B. C. D.核心考點(diǎn)四:直棱柱外接球【規(guī)律方法】如圖1,圖2,圖3,直三棱柱內(nèi)接于球(同時(shí)直棱柱也內(nèi)接于圓柱,棱柱的上下底面可以是任意三角形)圖1圖2圖3第一步:確定球心的位置,是的外心,則平面;第二步:算出小圓的半徑,(也是圓柱的高);第三步:勾股定理:,解出【典型例題】例10.(2022·河南新鄉(xiāng)·一模(理))已知正三棱柱的側(cè)棱長為,底面邊長為,若該正三棱柱的外接球體積為,當(dāng)最大時(shí),該正三棱柱的體積為(

)A. B. C. D.例11.(2022·湖南岳陽·高三階段練習(xí))已知直三棱柱中,,當(dāng)該三棱柱體積最大時(shí),其外接球的體積為(

)A. B. C. D.例12.(2021·四川瀘州·二模(文))直六棱柱的底面是正六邊形,其體積是,則該六棱柱的外接球的表面積的最小值是(

)A. B. C. D.核心考點(diǎn)五:直棱錐外接球【規(guī)律方法】如圖,平面,求外接球半徑.解題步驟:第一步:將畫在小圓面上,為小圓直徑的一個(gè)端點(diǎn),作小圓的直徑,連接,則必過球心;第二步:為的外心,所以平面,算出小圓的半徑(三角形的外接圓直徑算法:利用正弦定理,得),;第三步:利用勾股定理求三棱錐的外接球半徑:=1\*GB3①;=2\*GB3②.【典型例題】例13.(2022·內(nèi)蒙古鄂爾多斯·高三期中(文))三棱錐中,平面,為直角三角形,,,,則三棱錐的外接球的表面積為(

)A. B. C. D.例14.(2022·福建·寧德市民族中學(xué)高三期中)已知三棱錐P-ABC中,底面ABC,PA=AB=AC=2,∠BAC=120°,則三棱錐P-ABC的外接球的表面積為(

)A. B. C. D.例15.(2021·四川成都·高三開學(xué)考試(文))已知在三棱錐中,側(cè)棱平面,,,,,則三棱錐外接球的表面積為(

)A. B. C. D.核心考點(diǎn)六:正棱錐與側(cè)棱相等模型【規(guī)律方法】1、正棱錐外接球半徑:.2、側(cè)棱相等模型:如圖,的射影是的外心三棱錐的三條側(cè)棱相等三棱錐的底面在圓錐的底上,頂點(diǎn)點(diǎn)也是圓錐的頂點(diǎn).解題步驟:第一步:確定球心的位置,取的外心,則三點(diǎn)共線;第二步:先算出小圓的半徑,再算出棱錐的高(也是圓錐的高);第三步:勾股定理:,解出.【典型例題】例16.(2022·江西·金溪一中高三階段練習(xí)(文))在正三棱錐S-ABC中,,△ABC的邊長為2,則該正三棱錐外接球的表面積為______.例17.(2022·全國·高三專題練習(xí))已知正三棱錐,其外接球球的半徑為,則該正三棱錐的體積的最大值為__________.例18.(2022·全國·高三專題練習(xí))已知正三棱錐的棱長為,底面邊長為6.則該正三棱錐外接球的表面積為_______.例19.(2022·全國·高三專題練習(xí))三棱錐體積為,且,則三棱錐外接球的表面積為____________.例20.(2022·全國·高三專題練習(xí))在三棱錐中,,,則三棱錐的外接球的表面積為___________.核心考點(diǎn)七:側(cè)棱為外接球直徑模型【規(guī)律方法】找球心,然后作底面的垂線,構(gòu)造直角三角形.【典型例題】例21.(2022·河南河南·一模(文))三棱錐的外接球的表面積為是該球的直徑,,則三棱錐的體積為_____.例22.(2022·河南·一模(理))三棱錐的外接球的表面積為,AD是該球的直徑,是邊長為的正三角形,則三棱錐的體積為______.例23.(2021·全國·高三專題練習(xí)(文))已知三棱錐P﹣ABC中,,AC=2,PA為其外接球的一條直徑,若該三棱錐的體積為,則外接球的表面積為___________.核心考點(diǎn)八:共斜邊拼接模型【規(guī)律方法】如圖,在四面體中,,,此四面體可以看成是由兩個(gè)共斜邊的直角三角形拼接而形成的,為公共的斜邊,故以“共斜邊拼接模型”命名之.設(shè)點(diǎn)為公共斜邊的中點(diǎn),根據(jù)直角三角形斜邊中線等于斜邊的一半的結(jié)論可知,,即點(diǎn)到,,,四點(diǎn)的距離相等,故點(diǎn)就是四面體外接球的球心,公共的斜邊就是外接球的一條直徑.【典型例題】例24.在矩形中,,沿將矩形折成一個(gè)直二面角,則四面體的外接球的體積為()A.B.C.D.例25.三棱錐中,平面平面,,,,則三棱錐的外接球的半徑為例26.在平行四邊形中,滿足,,若將其沿折成直二面角,則三棱錐的外接球的表面積為A. B. C. D.核心考點(diǎn)九:垂面模型【規(guī)律方法】如圖1所示為四面體,已知平面平面,其外接球問題的步驟如下:(1)找出和的外接圓圓心,分別記為和.(2)分別過和作平面和平面的垂線,其交點(diǎn)為球心,記為.(3)過作的垂線,垂足記為,連接,則.(4)在四棱錐中,垂直于平面,如圖2所示,底面四邊形的四個(gè)頂點(diǎn)共圓且為該圓的直徑.圖1圖2【典型例題】例27.(2022·全國·高三專題練習(xí))三棱錐中,平面平面,,,,則三棱錐的外接球的半徑為______例28.(2022·安徽馬鞍山·一模(文))三棱錐中,與均為邊長為的等邊三角形,平面平面,則該三棱錐的外接球的表面積為________.例29.(2022·全國·高三專題練習(xí))三棱錐中,是邊長為的等邊三角形,,平面平面,則該三棱錐的外接球的體積為______例30.(2021·全國·高三專題練習(xí))已知在三棱錐中,,平面平面,則三棱錐外接球的表面積為__________.核心考點(diǎn)十:二面角模型【規(guī)律方法】如圖1所示為四面體,已知二面角大小為,其外接球問題的步驟如下:(1)找出和的外接圓圓心,分別記為和.(2)分別過和作平面和平面的垂線,其交點(diǎn)為球心,記為.(3)過作的垂線,垂足記為,連接,則.(4)在四棱錐中,垂直于平面,如圖2所示,底面四邊形的四個(gè)頂點(diǎn)共圓且為該圓的直徑.【典型例題】例31.(2022·貴州·模擬預(yù)測(理))如圖,在三棱錐中,是邊長為的正三角形,,二面角的余弦值為,則三棱錐外接球的表面積為______.例32.(2022·江西贛州·高三階段練習(xí)(文))已知菱形的邊長為2,且,沿把折起,得到三棱錐,且二面角的平面角為,則三棱錐的外接球的表面積為___________.例33.(2022·江蘇·南京市金陵中學(xué)河西分校高三階段練習(xí))在三棱錐中,△是邊長為3的正三角形,且,,二面角的大小為,則此三棱錐外接球的體積為________.例34.(2022·廣東汕頭·高三階段練習(xí))在邊長為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為___________.核心考點(diǎn)十一:坐標(biāo)法【規(guī)律方法】對(duì)于一般多面體的外接球,可以建立空間直角坐標(biāo)系,設(shè)球心坐標(biāo)為,利用球心到各頂點(diǎn)的距離相等建立方程組,解出球心坐標(biāo),從而得到球的半徑長.坐標(biāo)的引入,使外接球問題的求解從繁瑣的定理推論中解脫出來,轉(zhuǎn)化為向量的計(jì)算,大大降低了解題的難度.【典型例題】例35.(2022·黑龍江·大慶實(shí)驗(yàn)中學(xué)模擬預(yù)測)直角中,是斜邊上的一動(dòng)點(diǎn),沿將翻折到,使二面角為直二面角,當(dāng)線段的長度最小時(shí),四面體的外接球的表面積為(

)A. B. C. D.例36.(2022·全國·高三專題練習(xí)(理))如圖,在長方體中,,,,是棱上靠近的三等分點(diǎn),分別為的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面垂直,則三棱錐的外接球的表面積是(

)A. B. C. D.例37.(2022·山西·一模(理))如圖①,在中,,,D,E分別為,的中點(diǎn),將沿折起到的位置,使,如圖②.若F是的中點(diǎn),則四面體的外接球體積是(

)A. B. C. D.核心考點(diǎn)十二:圓錐圓柱圓臺(tái)模型【規(guī)律方法】1、球內(nèi)接圓錐如圖,設(shè)圓錐的高為,底面圓半徑為,球的半徑為.通常在中,由勾股定理建立方程來計(jì)算.如圖,當(dāng)時(shí),球心在圓錐內(nèi)部;如圖,當(dāng)時(shí),球心在圓錐外部.和本專題前面的內(nèi)接正四棱錐問題情形相同,圖2和圖3兩種情況建立的方程是一樣的,故無需提前判斷.由圖、圖可知,或,故,所以.2、球內(nèi)接圓柱如圖,圓柱的底面圓半徑為,高為,其外接球的半徑為,三者之間滿足.例38.球內(nèi)接圓臺(tái),其中分別為圓臺(tái)的上底面、下底面、高.【典型例題】例39.(2022·廣東·廣州市第十六中學(xué)高三階段練習(xí))已知一圓臺(tái)高為7,下底面半徑長4,此圓臺(tái)外接球的表面積為,則此圓臺(tái)的體積為(

)A. B. C. D.例40.(2022·河南·高三階段練習(xí)(文))已知圓錐的底面半徑為,側(cè)面積為,則該圓錐的外接球的表面積為______.例41.(2022·上海·曹楊二中高三階段練習(xí))已知圓柱的軸截面是邊長為2的正方形,P為上底面圓的圓心,AB為下底面圓的直徑,E為下底面圓周上一點(diǎn),則三棱錐外接球的表面積為___________.例42.(2022·全國·高三專題練習(xí))已知圓錐的底面半徑為,其側(cè)面展開圖為一個(gè)半圓,則該圓錐的內(nèi)切球(球與圓錐的底面和側(cè)面均相切)的表面積為______.核心考點(diǎn)十三:錐體內(nèi)切球【規(guī)律方法】等體積法,即【典型例題】例43.(2022·全國·高三專題練習(xí))球O是棱長為1的正方體的內(nèi)切球,球與面、面、面、球O都相切,則球的表面積是_______________.例44.(2022·全國·高三專題練習(xí))若正四棱錐內(nèi)接于球,且底面過球心,則球的半徑與正四棱錐內(nèi)切球的半徑之比為__________.例45.(2022·山東濟(jì)南·二模)在高為2的直三棱柱中,AB⊥AC,若該直三棱柱存在內(nèi)切球,則底面△ABC周長的最小值為___________.核心考點(diǎn)十四:棱切球【規(guī)律方法】找切點(diǎn),找球心,構(gòu)造直角三角形【典型例題】例46.(2022?涪城區(qū)校級(jí)開學(xué))一個(gè)正方體的內(nèi)切球、外接球、與各棱都相切的球的半徑之比為A. B. C. D.例47.(2022?江蘇模擬)正四面體的棱長為4,若球與正四面體的每一條棱都相切,則球的表面積為A. B. C. D.例48.(2022?昆都侖區(qū)校級(jí)一模)已知正三棱柱的高等于1,一個(gè)球與該正三棱柱的所有棱都相切,則該球的體積為A. B. C. D.【新題速遞】一、單選題1.(2022·湖北·高三階段練習(xí))已知某圓臺(tái)的體積為,其上底面和下底面的面積分別為,且該圓臺(tái)兩個(gè)底面的圓周都在球O的球面上,則球O的表面積為(

)A. B. C. D.2.(2022·甘肅·高臺(tái)縣第一中學(xué)模擬預(yù)測(文))已知A,B,C均在球O的球面上運(yùn)動(dòng),且滿足,若三棱錐體積的最大值為6,則球O的體積為(

).A. B. C. D.3.(2022·江蘇南京·模擬預(yù)測)已知,,,為球的球面上的四點(diǎn),記的中點(diǎn)為,且,四棱錐體積的最大值為,則球的表面積為(

)A. B. C. D.4.(2022·黑龍江·海倫市第一中學(xué)高三期中)已知四面體ABCD的所有頂點(diǎn)在球O的表面上,平面BCD,,,,則球O的體積為(

)A. B. C. D.5.(2022·全國·高三階段練習(xí)(文))已知正四棱錐的所有頂點(diǎn)都在體積為的球的球面上,若該正四棱錐的高為,且,則該正四棱錐的體積的取值范圍是(

)A. B. C. D.6.(2022·貴州·高三階段練習(xí)(文))已知正三棱錐的底面邊長為6,體積為,A,B,C三點(diǎn)均在以S為球心的球S的球面上,P是該球面上任意一點(diǎn),則三棱錐體積的最大值為(

)A. B. C. D.7.(2022·全國·高三階段練習(xí)(理))已知體積為的正三棱柱的所有頂點(diǎn)都在球的球面上,當(dāng)球的表面積取得最小值時(shí),該正三棱柱的底面邊長與高的比值為(

)A. B. C. D.8.(2022·福建·浦城縣第三中學(xué)高三期中)《九章算術(shù)·商功》:“斜解立方,得兩塹堵,其一為陽馬,一為鱉臑,陽馬居二,鱉臑居一.”下圖解釋了這段話中由一個(gè)長方體得到塹堵、陽馬、鱉臑的過程.在一個(gè)長方體截得的塹堵和鱉臑中,若塹堵的內(nèi)切球(與各面均相切)半徑為1,則鱉臑體積的最小值為(

)A. B. C. D.二、多選題9.(2022·浙江·慈溪中學(xué)高三期中)已知棱長為1的正方體,以正方體中心為球心的球與正方體的各條棱相切,點(diǎn)為球面上的動(dòng)點(diǎn),則下列說法正確的是(

)A.球在正方體外部分的體積為B.若點(diǎn)在球的正方體外部(含正方體表面)運(yùn)動(dòng),則C.若點(diǎn)在平面下方,則直線與平面所成角的正弦值最大為D.若點(diǎn)??在球的正方體外部(含正方體表面)運(yùn)動(dòng),則最小值為10.(2022·福建泉州·高三開學(xué)考試)已知正四棱臺(tái)的所有頂點(diǎn)都在球的球面上,,為內(nèi)部(含邊界)的動(dòng)點(diǎn),則(

)A.平面 B.球的表面積為C.的最小值為 D.與平面所成角的最大值為60°11.(2022·廣東·鐵一中學(xué)高三階段練習(xí))如圖,已知圓錐頂點(diǎn)為,其軸截面是邊長為6的為正三角形,為底面的圓心,為圓的一條直徑,球內(nèi)切于圓錐(與圓錐底面和側(cè)面均相切),點(diǎn)是球與圓錐側(cè)面的交線上一動(dòng)點(diǎn),則(

)A.圓錐的表面積是 B.球的體積是C.四棱錐體積的最大值為 D.的最大值為12.(2022·湖南·長沙一中模擬預(yù)測)傳說古希臘數(shù)學(xué)家阿基米德的墓碑上刻著一個(gè)圓柱,圓柱內(nèi)有一個(gè)內(nèi)切球,這個(gè)球的直徑恰好與圓柱的高相等“圓柱容球”是阿基米德最為得意的發(fā)現(xiàn);如圖是一個(gè)圓柱容球,為圓柱上下底面的圓心,為球心,EF為底面圓的一條直徑,若球的半徑,則(

)A.球與圓柱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論