版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年貴州省遵義市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
3.設(shè)()A.1B.-1C.0D.2
4.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
5.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。
A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移
B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷
C.當(dāng)時(shí),可近似取
D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)
6.下列命題正確的是()A.A.
B.
C.
D.
7.
8.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.4
9.
10.
等于()A.A.
B.
C.
D.0
11.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
12.
13.
14.
A.0B.2C.4D.8
15.
16.
17.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
18.曲線y=ex與其過(guò)原點(diǎn)的切線及y軸所圍面積為
A.
B.
C.
D.
19.
20.
二、填空題(20題)21.22.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
23.
24.
25.
26.27.
28.
29.30.微分方程y"=y的通解為_(kāi)_____.31.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為_(kāi)_____.32.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.
33.
34.
35.36.37.設(shè)y=3x,則y"=_________。38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.求曲線在點(diǎn)(1,3)處的切線方程.46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.47.48.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).49.證明:50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.
53.
54.求微分方程的通解.
55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.
57.
58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則59.60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.62.63.設(shè)y=y(x)由方程y2-3xy+x3=1確定,求dy.
64.
65.66.67.
68.
69.
70.五、高等數(shù)學(xué)(0題)71.F(x)是f(x)的一個(gè)原函數(shù),c為正數(shù),則∫f(x)dx=()。
A.
B.F(x)+c
C.F(x)+sinc
D.F(x)+lnc
六、解答題(0題)72.
參考答案
1.C
2.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
3.A
4.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
5.D
6.D
7.A解析:
8.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)在一點(diǎn)處的定義.
可知應(yīng)選B.
9.B解析:
10.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有
故應(yīng)選D.
11.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。
12.B
13.D
14.A解析:
15.A
16.D
17.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
18.A
19.A解析:
20.C21.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.22.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
23.(sinx+cosx)exdx(sinx+cosx)exdx解析:
24.
25.
本題考查的知識(shí)點(diǎn)為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
26.
27.
28.
29.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。30.y'=C1e-x+C2ex
;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
將方程變形,化為y"-y=0,
特征方程為r2-1=0;
特征根為r1=-1,r2=1.
因此方程的通解為y=C1e-x+C2ex.31.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.32.-sinx本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.
由于cosx為f(x)的原函數(shù),可知
f(x)=(cosx)'=-sinx.
33.3x2siny3x2siny解析:
34.
解析:
35.
36.37.3e3x38.e-1/2
39.2m2m解析:
40.
41.
列表:
說(shuō)明
42.函數(shù)的定義域?yàn)?/p>
注意
43.
則
44.
45.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.由二重積分物理意義知
47.
48.
49.
50.
51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
52.由一階線性微分方程通解公式有
53.
54.
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
56.
57.58.由等價(jià)無(wú)窮小量的定義可知
59.
60.
61.由于62.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生感到困難的題目,普遍感到無(wú)從下手,這是因?yàn)椴粫?huì)利用“定積分表示-個(gè)數(shù)值”的性質(zhì).
這種解題思路可以推廣到極限、二重積分等問(wèn)題中.
63.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.
若y=y(x)由方程F(x,y)=0確定,求dy常常有兩種方法.
(1)將方程F(x,y)=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東省安全員-C證考試(專職安全員)題庫(kù)附答案
- 貴州大學(xué)《營(yíng)養(yǎng)咨詢與健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)幼兒師范高等??茖W(xué)校《人力資源管理雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025吉林建筑安全員《A證》考試題庫(kù)及答案
- 貴陽(yáng)學(xué)院《地下結(jié)構(gòu)工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《中國(guó)近現(xiàn)代史史料學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州幼兒師范高等專科學(xué)?!段璧附虒W(xué)法Ⅲ(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年-河北省安全員考試題庫(kù)
- 2025年山西省安全員C證考試題庫(kù)
- 2025山東建筑安全員-B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 2023-2024學(xué)年全國(guó)小學(xué)三年級(jí)上語(yǔ)文人教版期末考卷(含答案解析)
- 汽車尾氣排放治理作業(yè)指導(dǎo)書
- 《生產(chǎn)能力與供貨能力證明》
- 初中校園欺凌校園安全教育
- 預(yù)應(yīng)力錨索加固監(jiān)理實(shí)施細(xì)則
- 小學(xué)三年級(jí)數(shù)學(xué)應(yīng)用題(100題)
- QCT1067.5-2023汽車電線束和電器設(shè)備用連接器第5部分:設(shè)備連接器(插座)的型式和尺寸
- (完整版)儀表選型
- T-CCAA 39-2022碳管理體系 要求
- 成人霧化吸入護(hù)理團(tuán)體標(biāo)準(zhǔn)解讀
- 2024-2030年中國(guó)氣槍行業(yè)市場(chǎng)深度分析及發(fā)展前景預(yù)測(cè)報(bào)告
評(píng)論
0/150
提交評(píng)論