福建省閩南四校2022年高考仿真卷數(shù)學(xué)試題含解析_第1頁
福建省閩南四校2022年高考仿真卷數(shù)學(xué)試題含解析_第2頁
福建省閩南四校2022年高考仿真卷數(shù)學(xué)試題含解析_第3頁
福建省閩南四校2022年高考仿真卷數(shù)學(xué)試題含解析_第4頁
福建省閩南四校2022年高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或2.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.已知集合A,B=,則A∩B=A. B. C. D.4.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率是()A. B. C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.6.在中,角所對的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.7.已知集合,則()A. B.C. D.8.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.9.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.10.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.1211.在中,內(nèi)角的平分線交邊于點(diǎn),,,,則的面積是()A. B. C. D.12.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實(shí)部與虛部之和為1 D.在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于第一象限二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù)滿足約束條件,則的最大值為______.14.的三個(gè)內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,已知,則________.15.已知,,求____________.16.若實(shí)數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標(biāo)函數(shù)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對高三年級隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計(jì)成績后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點(diǎn),是曲線上的動點(diǎn),求面積的最大值.22.(10分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.2.B【解析】

構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析.3.A【解析】

先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點(diǎn)睛】一般地,把不等式組放在數(shù)軸中得出解集。4.C【解析】

設(shè)出兩人到達(dá)小王的時(shí)間,根據(jù)題意列出不等式組,利用幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時(shí)間分別為,以12:00點(diǎn)為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率為:.故選:C【點(diǎn)睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運(yùn)算能力.5.C【解析】

求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.6.C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.7.B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.8.B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點(diǎn)評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤.9.D【解析】

判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運(yùn)用.10.C【解析】

由開始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻?,故選C.【點(diǎn)睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。11.B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進(jìn)而求出,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及正弦定理和余弦定理以及三角形面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.12.D【解析】

利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對應(yīng)點(diǎn)位于第一象限,故選D.【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、模為、對應(yīng)點(diǎn)為、共軛為.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當(dāng)直線過點(diǎn)時(shí),最大,且考點(diǎn):線性規(guī)劃.14.【解析】

利用正弦定理邊化角可得,從而可得,進(jìn)而求解.【詳解】由,由正弦定理可得,即,整理可得,又因?yàn)?,所以,因?yàn)?,所以,故答案為:【點(diǎn)睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎(chǔ)題.15.【解析】

求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【詳解】,,,因此,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16.12【解析】

畫出約束條件的可行域,求出最優(yōu)解,即可求解目標(biāo)函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標(biāo)函數(shù)y=3x-z,當(dāng)y=3x-z過點(diǎn)(4,0)時(shí),z有最大值,且最大值為12.故答案為:12.【點(diǎn)睛】本題考查線性規(guī)劃的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)或;(2).【解析】

(1)時(shí),分類討論,去掉絕對值,分類討論解不等式.(2)時(shí),分類討論去絕對值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過恒成立問題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因?yàn)?,所以,所以不等式等價(jià)于或或,解得或.所以不等式的解集為或.(2)因?yàn)椋?,根?jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因?yàn)楹愠闪ⅲ?,解?所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查分類討論去絕對值,分段函數(shù)求最值,不等式恒成立問題,屬于中檔題.18.(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見解析②期望;方差【解析】

(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問題,屬于基礎(chǔ)題.19.(1)(2)【解析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時(shí)取等,.所以的面積的最大值為.【點(diǎn)睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問題,難度較易.20.(1)l:,C方程為;(2)=【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進(jìn)一步轉(zhuǎn)換為.直線l的極坐標(biāo)方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標(biāo)方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,,所以=.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21.(1),;(2).【解析】

(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標(biāo)方程變形為,進(jìn)而可得出曲線的直角坐標(biāo)方程;(2)求出點(diǎn)到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標(biāo)方程變形為,所以,曲線的直角坐標(biāo)方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點(diǎn)到直線的最大距離為,,因此,的面積為最大值為.【點(diǎn)睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程之間的相互轉(zhuǎn)換,同時(shí)也考查了直線截

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論