版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年吉林省長春市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.∫sin5xdx等于().
A.A.
B.
C.
D.
2.A.A.
B.
C.
D.
3.
4.A.A.0
B.
C.arctanx
D.
5.A.0B.2C.2f(-1)D.2f(1)6.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
7.
8.A.A.4B.3C.2D.19.冪級數(shù)的收斂半徑為()A.1B.2C.3D.4
10.
11.
12.A.A.>0B.<0C.=0D.不存在
13.
14.()。A.2πB.πC.π/2D.π/4
15.
16.微分方程y"-y=ex的一個特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
17.
18.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx19.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
20.當(dāng)x一0時,與3x2+2x3等價的無窮小量是().
A.2x3
B.3x2
C.x2
D.x3
21.
22.
23.()。A.收斂且和為0
B.收斂且和為α
C.收斂且和為α-α1
D.發(fā)散
24.
25.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點
B.xo為f(x)的極小值點
C.xo不為f(x)的極值點
D.xo可能不為f(x)的極值點
26.設(shè)有直線當(dāng)直線l1與l2平行時,λ等于().
A.1B.0C.-1/2D.-127.()。A.
B.
C.
D.
28.
29.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
30.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
31.用待定系數(shù)法求微分方程y"-y=xex的一個特解時,特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
32.()A.A.1/2B.1C.2D.e
33.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
34.
35.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
36.
37.()。A.e-6
B.e-2
C.e3
D.e6
38.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計算時,用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)39.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)40.A.A.2/3B.3/2C.2D.341.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
42.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
43.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要44.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
45.
46.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
47.等于()。A.-1B.-1/2C.1/2D.1
48.
49.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確
50.
A.1B.0C.-1D.-2二、填空題(20題)51.
52.
53.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.
54.若∫x0f(t)dt=2e3x-2,則f(x)=________。
55.
56.
57.
則F(O)=_________.
58.
59.
60.
61.不定積分=______.
62.
63.64.設(shè)y=y(x)由方程x2+xy2+2y=1確定,則dy=______.65.二元函數(shù)z=x2+y2+1的極小值為_______.
66.
67.
68.方程cosxsinydx+sinxcosydy=0的通解為___________.69.設(shè)y=3x,則y"=_________。
70.
三、計算題(20題)71.求曲線在點(1,3)處的切線方程.
72.求微分方程y"-4y'+4y=e-2x的通解.
73.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.76.證明:77.將f(x)=e-2X展開為x的冪級數(shù).78.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
79.
80.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.82.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.83.求微分方程的通解.84.
85.
86.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
87.88.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
89.
90.
四、解答題(10題)91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.設(shè)函數(shù)
=___________。
六、解答題(0題)102.
參考答案
1.A本題考查的知識點為不定積分的換元積分法.
,可知應(yīng)選D.
2.B本題考查的知識點為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得
3.B
4.A
5.C本題考查了定積分的性質(zhì)的知識點。
6.D本題考查的知識點為偏導(dǎo)數(shù)的運算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
7.B
8.C
9.A由于可知收斂半徑R==1.故選A。
10.A
11.C
12.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。
13.A解析:
14.B
15.C
16.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
17.A解析:
18.B
19.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當(dāng)x<1時,f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
20.B由于當(dāng)x一0時,3x2為x的二階無窮小量,2x3為戈的三階無窮小量.因此,3x2+2x3為x的二階無窮小量.又由,可知應(yīng)選B.
21.B解析:
22.A
23.C
24.A
25.A
26.C解析:
27.C由不定積分基本公式可知
28.B
29.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
30.D本題考查了函數(shù)的微分的知識點。
31.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
32.C
33.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
34.B
35.C
36.B
37.A
38.D
39.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
40.A
41.D
42.D本題考查的知識點為偏導(dǎo)數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。
43.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
44.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
45.B
46.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
47.C本題考查的知識點為定積分的運算。
故應(yīng)選C。
48.B解析:
49.D
50.A
本題考查的知識點為導(dǎo)數(shù)公式.
可知應(yīng)選A.
51.
本題考查的知識點為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
52.(03)(0,3)解析:53.2e2x本題考查的知識點為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對所給表達(dá)式兩端關(guān)于x求導(dǎo).
54.6e3x
55.
56.
解析:
57.
58.0<k≤159.5.
本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
60.
61.
;本題考查的知識點為不定積分的換元積分法.
62.
63.
64.
;65.1;本題考查的知識點為二元函數(shù)的極值.
可知點(0,0)為z的極小值點,極小值為1.
66.2
67.22解析:
68.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識點.
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.69.3e3x
70.71.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
72.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
73.由等價無窮小量的定義可知74.函數(shù)的定義域為
注意
75.
76.
77.
78.
79.由一階線性微分方程通解公式有
80.由二重積分物理意義知
81.
82.
列表:
說明
83.
84.
則
85.
86.需求規(guī)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《針灸按摩基礎(chǔ)》課件
- 2020-2021學(xué)年遼寧省鐵嶺市六校高一下學(xué)期期末聯(lián)考地理試題
- 小學(xué)一年級口算題:20以內(nèi)的加減混合
- 小學(xué)一年級20以內(nèi)加減法試題口算速算練習(xí)題
- 2020年石油知識競賽試題215題及答案
- 三年級上冊25 灰雀
- 《紅樹灣營銷報告》課件
- 《騰訊內(nèi)外環(huán)境分析》課件
- 人的生殖和發(fā)育北師大版-課件
- 《焦點課題模板PU生產(chǎn)模式改善和環(huán)境治理》課件
- 人才培養(yǎng)與團(tuán)隊建設(shè)計劃三篇
- 2024年急性胰腺炎急診診治專家共識解讀課件
- 六年級地方課程教案
- 【寒假預(yù)習(xí)】部編版二年級語文下冊生字練字帖(帶拼音、筆順)
- 信息技術(shù)-計算機(jī)第三方支付行業(yè)深度報告:監(jiān)管加速第三方支付合規(guī)及出清提費利潤彈性巨大
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識題庫【黃金題型】
- 年終培訓(xùn)機(jī)構(gòu)述職報告
- 外科手術(shù)備皮范圍
- 2024初中數(shù)學(xué)競賽八年級競賽輔導(dǎo)講義專題07 分式的化簡與求值含答案
- GB 1886.174-2024食品安全國家標(biāo)準(zhǔn)食品添加劑食品工業(yè)用酶制劑
- 評判創(chuàng)業(yè)計劃書
評論
0/150
提交評論