版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年黑龍江省七臺河市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級
C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強與下級的溝通和了解
D.在抓好技術(shù)工作的同時,做好管理工作
3.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
4.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
5.下列命題不正確的是()。
A.兩個無窮大量之和仍為無窮大量
B.上萬個無窮小量之和仍為無窮小量
C.兩個無窮大量之積仍為無窮大量
D.兩個有界變量之和仍為有界變量
6.若x0為f(x)的極值點,則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
7.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
8.點(-1,-2,-5)關(guān)于yOz平面的對稱點是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)
9.
10.
11.A.2x
B.3+2x
C.3
D.x2
12.
13.
14.過點(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
15.若x→x0時,α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時,α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型
16.
17.下列關(guān)于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
18.A.
B.
C.
D.
19.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
20.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)二、填空題(20題)21.22.設(shè)y=sinx2,則dy=______.
23.若∫x0f(t)dt=2e3x-2,則f(x)=________。
24.
25.
26.
27.設(shè)y=5+lnx,則dy=________。
28.
29.
30.
31.
32.
33.
34.曲線y=(x+1)/(2x+1)的水平漸近線方程為_________.
35.微分方程y=x的通解為________。
36.設(shè)y=ex,則dy=_________。
37.
38.39.
40.
三、計算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.
47.
48.證明:49.
50.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求微分方程的通解.
54.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
55.將f(x)=e-2X展開為x的冪級數(shù).56.57.求曲線在點(1,3)處的切線方程.58.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.求y=xex的極值及曲線的凹凸區(qū)間與拐點.62.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.
63.求∫arctanxdx。
64.
65.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
66.
67.
68.69.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。
70.
又可導(dǎo).
五、高等數(shù)學(xué)(0題)71.已知∫f(ex)dx=e2x,則f(x)=________。
六、解答題(0題)72.
參考答案
1.D
2.C
3.B
4.D
5.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
6.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導(dǎo),如y=|x|,在點x0=0處f(x)不可導(dǎo),但是點x0=0為f(a)=|x|的極值點.
(2)f(x)在點x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項可知應(yīng)選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導(dǎo),且x0為f(x)的極值點,則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
7.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
8.D關(guān)于yOz平面對稱的兩點的橫坐標(biāo)互為相反數(shù),故選D。
9.C
10.C解析:
11.A由導(dǎo)數(shù)的基本公式及四則運算法則,有故選A.
12.A解析:
13.A
14.A
15.D
16.A
17.C
18.B
19.D
20.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
21.
本題考查的知識點為初等函數(shù)的求導(dǎo)運算.
本題需利用導(dǎo)數(shù)的四則運算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認(rèn)作sinx,事實上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.22.2xcosx2dx本題考查的知識點為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.
23.6e3x
24.
25.2
26.11解析:
27.
28.29.本題考查的知識點為定積分的基本公式。
30.
31.
32.
33.
解析:
34.y=1/2本題考查了水平漸近線方程的知識點。35.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,
36.exdx
37.
38.
本題考查的知識點為二階常系數(shù)線性微分方程的求解.
39.ln(1+x)本題考查的知識點為可變上限積分求導(dǎo).
40.
41.
42.
43.
44.
45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
46.
47.
48.
49.
則
50.由一階線性微分方程通解公式有
51.
列表:
說明
52.函數(shù)的定義域為
注意
53.
54.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
55.
56.
57.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
58.由等價無窮小量的定義可知
59.
60.由二重積分物理意義知
61.y=xex
的定義域為(-∞,+∞),y'=(1+x)ex,y"=(2+x)ex.令y'=0,得駐點x1=-1.令y"=0,得x2=-2.
極小值點為x=-1,極小值為
曲線的凹區(qū)間為(-2,+∞);曲線的凸區(qū)間為(-∞,-2);拐點為本題考查的知識點為:描述函數(shù)幾何性態(tài)的綜合問題.62.所給曲線圍成的平面圖形如圖1-3所示.
解法1利用定積分求平面圖形的面積.由于的解為x=1,y=2,可得
解法2利用二重積分求平面圖形面積.由于
的解為x=1,y=2,
求旋轉(zhuǎn)體體積與解法1同.本題考查的知識點有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
本題也可以利用二重積分求平面圖形的面積.
63.
64.本題考查的知識點為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)語文工作計劃范文
- 學(xué)生個人檔案里的自我鑒定6篇
- 2024年規(guī)范化EPC總包協(xié)議格式
- 寒假日記大全(8篇)
- 有關(guān)公司年會策劃方案范文匯編9篇
- 課外活動總結(jié)集錦15篇
- 《局外人》讀書筆記12篇
- 中班元旦活動方案(15篇)
- 汽車實習(xí)報告范文匯編六篇
- 軍訓(xùn)個人心得體會匯編15篇
- 跟著音樂游中國智慧樹知到期末考試答案章節(jié)答案2024年廣州大學(xué)
- 建設(shè)工程環(huán)保專項方案
- DB13T 5427-2021 水體底泥洗脫生態(tài)恢復(fù)工程技術(shù)指南
- 雙減工作教師責(zé)任書
- 聲藝 EPM8操作手冊
- 西北農(nóng)林科技大學(xué)專業(yè)學(xué)位研究生課程案例庫建設(shè)項目申請書(MBA)
- 聚乙烯醇纖維zhanshi
- 外墻保溫、真石漆施工技術(shù)交底
- 演播室的藝術(shù):現(xiàn)場導(dǎo)播切換技巧
- 盾構(gòu)帶壓開倉施工方案
- 高壓開關(guān)柜試驗報告(完)
評論
0/150
提交評論