2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年陜西省延安市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.平面π1:x-2y+3x+1=0,π2:2x+y+2=0的位置關(guān)系為()A.垂直B.斜交C.平行不重合D.重合

2.

3.

4.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

5.A.eB.e-1

C.e2

D.e-2

6.曲線Y=x-3在點(diǎn)(1,1)處的切線的斜率為().

A.-1

B.-2

C.-3

D.-4

7.

8.

9.

10.

11.

12.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

13.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來(lái)表示,其公式為()。

A.

B.

C.

D.

14.設(shè)z=x2+y2,dz=()。

A.2ex2+y2(xdx+ydy)

B.2ex2+y2(zdy+ydx)

C.ex2+y2(xdx+ydy)

D.2ex2+y2(dx2+dy2)

15.A.A.

B.

C.

D.

16.

17.

18.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0

B.f(xo)必定存在,但f(xo)不一定等于零

C.f(xo)可能不存在

D.f(xo)必定不存在

19.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

20.A.A.

B.e

C.e2

D.1

二、填空題(20題)21.

22.

23.

24.

25.設(shè)是收斂的,則后的取值范圍為_(kāi)_____.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

42.

43.

44.求曲線在點(diǎn)(1,3)處的切線方程.

45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

46.

47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

48.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

50.求微分方程y"-4y'+4y=e-2x的通解.

51.證明:

52.求微分方程的通解.

53.

54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

55.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

60.

四、解答題(10題)61.

62.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.

63.求微分方程y"-4y'+4y=e-2x的通解。

64.用洛必達(dá)法則求極限:

65.(本題滿分8分)計(jì)算

66.

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.曲線y=lnx在點(diǎn)_________處的切線平行于直線y=2x一3。

六、解答題(0題)72.

參考答案

1.A本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系。兩平面的關(guān)系可由平面的法向量n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直。若n1//n2,則兩平面平行,其中當(dāng)時(shí),兩平面平行,但不重合。當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1={1,-2,3},n2={2,1,0),n1,n2=0,可知,n1⊥n2,因此π1⊥π2,故選A。

2.B

3.B

4.D

5.C

6.C點(diǎn)(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.

7.C

8.C解析:

9.A

10.C解析:

11.D解析:

12.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

13.A

14.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy

15.D

16.D

17.D

18.C

19.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

20.C本題考查的知識(shí)點(diǎn)為重要極限公式.

21.2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

22.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.

23.

24.ex2

25.k>1本題考查的知識(shí)點(diǎn)為廣義積分的收斂性.

由于存在,可知k>1.

26.

本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

27.

28.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。

29.

30.3x2siny3x2siny解析:

31.63/12

32.

33.2

34.

35.3yx3y-1

36.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

37.1

38.ln2

39.

40.2.

本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

41.

列表:

說(shuō)明

42.

43.

44.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

45.

46.

47.由等價(jià)無(wú)窮小量的定義可知

48.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

49.

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.

52.

53.

54.函數(shù)的定義域?yàn)?/p>

注意

55.

56.

57.

58.

59.由二重積分物理意義知

60.由一階線性微分方程通解公式有

61.

62.

63.

64.

65.本題考查的知識(shí)點(diǎn)為計(jì)算反常積分.

計(jì)算反常積分應(yīng)依反常積分收斂性定義,將其轉(zhuǎn)化為定積分與極限兩種運(yùn)算.

66.

67.解

68.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的應(yīng)用.

單調(diào)增加區(qū)間為(0,+∞);

單調(diào)減少區(qū)間為(-∞,0);

極小值為5,極小值點(diǎn)為x=0;

注上述表格填正確,則可得滿分.

這個(gè)題目

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論