版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年福建省廈門市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.()。A.過原點且平行于X軸B.不過原點但平行于X軸C.過原點且垂直于X軸D.不過原點但垂直于X軸
2.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
3.下列命題不正確的是()。
A.兩個無窮大量之和仍為無窮大量
B.上萬個無窮小量之和仍為無窮小量
C.兩個無窮大量之積仍為無窮大量
D.兩個有界變量之和仍為有界變量
4.
5.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx
6.
7.設(shè)函數(shù)f(x)在點x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
8.若收斂,則下面命題正確的是()A.A.
B.
C.
D.
9.
10.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
11.設(shè)Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)
12.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號不定
13.當(dāng)x一0時,與3x2+2x3等價的無窮小量是().
A.2x3
B.3x2
C.x2
D.x3
14.
15.在企業(yè)中,財務(wù)主管與財會人員之間的職權(quán)關(guān)系是()
A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒有關(guān)系
16.A.A.>0B.<0C.=0D.不存在
17.A.
B.
C.
D.
18.
19.()。A.
B.
C.
D.
20.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動,(式中∮以rad計,t以s計)。則當(dāng)t=0和t=2s時,關(guān)于篩面中點M的速度和加速度就散不正確的一項為()。
A.當(dāng)t=0時,篩面中點M的速度大小為15.7cm/s
B.當(dāng)t=0時,篩面中點M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時,篩面中點M的速度大小為0
D.當(dāng)t=2s時,篩面中點M的切向加速度大小為12.3cm/s2
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.設(shè)y=sinx2,則dy=______.
40.
三、計算題(20題)41.求曲線在點(1,3)處的切線方程.
42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
45.
46.
47.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
48.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
50.將f(x)=e-2X展開為x的冪級數(shù).
51.
52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
53.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.證明:
56.
57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
58.
59.求微分方程的通解.
60.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)某產(chǎn)品需求函數(shù)為
求p=6時的需求彈性,若價格上漲1%,總收入增加還是減少?
六、解答題(0題)72.
參考答案
1.C將原點(0,0,O)代入直線方程成等式,可知直線過原點(或由
2.C
3.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
4.C
5.B本題考查的知識點為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
6.C解析:
7.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
8.D本題考查的知識點為級數(shù)的基本性質(zhì).
由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.
本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯誤.
9.D解析:
10.D
11.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。
12.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時,f(x)可能大于0也可能小于0。
13.B由于當(dāng)x一0時,3x2為x的二階無窮小量,2x3為戈的三階無窮小量.因此,3x2+2x3為x的二階無窮小量.又由,可知應(yīng)選B.
14.C
15.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財務(wù)主管與財會人員之間是直線職權(quán)關(guān)系。
16.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。
17.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
18.D
19.C由不定積分基本公式可知
20.D
21.
22.
23.1
24.
25.1
26.
27.
本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
28.
29.由可變上限積分求導(dǎo)公式可知
30.
31.本題考查的知識點為定積分的基本公式。
32.
33.
34.(-∞2)(-∞,2)解析:
35.-3e-3x-3e-3x
解析:
36.
37.
本題考查的知識點為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域為(-∞,0),(0,+∞),點x=2為其定義區(qū)間(0,+∞)內(nèi)的點,從而知
38.
39.2xcosx2dx本題考查的知識點為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.
40.
本題考查的知識點為兩個:參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
41.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.由二重積分物理意義知
44.
45.
則
46.
47.由等價無窮小量的定義可知
48.
49.函數(shù)的定義域為
注意
50.
51.
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
53.由一階線性微分方程通解公式有
54.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度商鋪租賃與市場拓展服務(wù)協(xié)議4篇
- 科技驅(qū)動引領(lǐng)未來
- 專業(yè)建筑裝飾工程施工合作合同版B版
- 2025年度柴油銷售區(qū)域市場調(diào)研合作協(xié)議4篇
- 2025年度養(yǎng)老院場地租賃及養(yǎng)老服務(wù)合同8篇
- 2025年度茶葉電商平臺茶具批發(fā)銷售合同范本4篇
- 2025年度玩具產(chǎn)品電商銷售合作協(xié)議范本4篇
- 專業(yè)樁基砍除工程承包合同2024年
- 2025年度新型生物制藥研發(fā)合作合同范本4篇
- 2024纜車司機(jī)雇傭合同(滑雪場)
- 餐飲行業(yè)智慧餐廳管理系統(tǒng)方案
- 2025年度生物醫(yī)藥技術(shù)研發(fā)與許可協(xié)議3篇
- 電廠檢修安全培訓(xùn)課件
- 殯葬改革課件
- 血壓計保養(yǎng)記錄表
- 食品的售后服務(wù)承諾書范本范文(通用3篇)
- 新外研版九年級上冊(初三)英語全冊教學(xué)課件PPT
- 初中中考英語總復(fù)習(xí)《代詞動詞連詞數(shù)詞》思維導(dǎo)圖
- 植物和五行關(guān)系解說
- 滬教牛津版初中英語七年級下冊全套單元測試題
- 因式分解法提公因式法公式法
評論
0/150
提交評論