版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省黃石市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.3B.2C.1D.0
2.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
3.
4.
5.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
6.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.
B.
C.
D.
7.
8.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
9.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
10.若級(jí)數(shù)在x=-1處收斂,則此級(jí)數(shù)在x=2處
A.發(fā)散B.條件收斂C.絕對(duì)收斂D.不能確定11.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
12.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
13.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來(lái)表示,其公式為()。
A.
B.
C.
D.
14.
15.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
16.若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
17.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
18.
19.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.1
20.
21.交換二次積分次序等于().A.A.
B.
C.
D.
22.已知
則
=()。
A.
B.
C.
D.
23.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件24.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
25.
26.
27.
A.1B.0C.-1D.-2
28.
29.()。A.
B.
C.
D.
30.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
31.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]32.
33.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
34.
35.
36.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為
A.3B.2C.1D.037.極限等于().A.A.e1/2B.eC.e2D.138.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
39.
40.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
41.
42.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
43.
44.
45.
46.A.A.較高階的無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.較低階的無(wú)窮小量47.A.A.
B.
C.
D.
48.A.A.
B.e
C.e2
D.1
49.
50.A.A.2B.1C.0D.-1二、填空題(20題)51.52.53.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
54.
55.56.57.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.
58.
59.設(shè)y=cos3x,則y'=__________。
60.
61.設(shè)z=xy,則dz=______.
62.設(shè)f(x)=esinx,則=________。63.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。64.65.
66.67.68.69.70.y''-2y'-3y=0的通解是______.三、計(jì)算題(20題)71.
72.求微分方程y"-4y'+4y=e-2x的通解.
73.
74.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.證明:77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.78.求曲線在點(diǎn)(1,3)處的切線方程.79.求微分方程的通解.
80.
81.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.82.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).83.84.
85.86.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.
92.
93.
94.
95.
96.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.A
2.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
3.B
4.A
5.A
6.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.
7.B
8.D
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
9.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
10.C由題意知,級(jí)數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對(duì)收斂.
11.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
12.D解析:
13.A
14.A
15.D由拉格朗日定理
16.B
17.B
18.C
19.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
20.A
21.B本題考查的知識(shí)點(diǎn)為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應(yīng)選B.
22.A
23.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
24.B
25.D
26.B
27.A
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)公式.
可知應(yīng)選A.
28.D
29.A
30.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
31.B∵一1≤x一1≤1∴0≤x≤2。
32.A
33.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
34.A解析:
35.A解析:
36.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。
37.C本題考查的知識(shí)點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
38.C
39.A
40.B
41.A
42.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
43.C
44.A解析:
45.D
46.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
47.B
48.C本題考查的知識(shí)點(diǎn)為重要極限公式.
49.B
50.C51.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
52.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
53.
;
54.2
55.9056.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。
57.2e2x本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對(duì)所給表達(dá)式兩端關(guān)于x求導(dǎo).
58.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)
59.-3sin3x
60.
解析:
61.yxy-1dx+xylnxdy62.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。63.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
64.65.1/2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
66.x
67.
68.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。69.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.所給級(jí)數(shù)為缺項(xiàng)情形,由于70.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.71.由一階線性微分方程通解公式有
72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
73.
74.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
75.
76.
77.函數(shù)的定義域?yàn)?/p>
注意
78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年滬科新版八年級(jí)地理上冊(cè)階段測(cè)試試卷
- 2025中國(guó)鐵路北京局集團(tuán)限公司招聘普通高校畢業(yè)生868人(二)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)聯(lián)通廣西分公司招聘97人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)神華系統(tǒng)內(nèi)招聘擬錄取人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)電信福建公司春季招聘148人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 動(dòng)物炭黑、動(dòng)物膠及其衍生物相關(guān)行業(yè)投資方案范本
- 2025中國(guó)旅游集團(tuán)戰(zhàn)略發(fā)展部副總經(jīng)理公開(kāi)招聘1人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)南水北調(diào)集團(tuán)新能源投資限公司下屬經(jīng)營(yíng)區(qū)域招聘5人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)人民財(cái)產(chǎn)保險(xiǎn)股份限公司自貢市分公司招聘5人(四川)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中共聊城市委組織部所屬事業(yè)單位公開(kāi)招聘(2025年)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 普通銑床操作規(guī)程
- 導(dǎo)尿管相關(guān)尿路感染防控措施實(shí)施情況督查表
- 三甲醫(yī)院評(píng)審護(hù)理院感組專家現(xiàn)場(chǎng)訪談問(wèn)題梳理(護(hù)士)
- 家庭、私有制和國(guó)家的起源
- 中職《數(shù)學(xué)》課程思政教學(xué)案例(一等獎(jiǎng))
- 水庫(kù)移民安置檔案分類大綱與編號(hào)方案
- GA 1802.2-2022生物安全領(lǐng)域反恐怖防范要求第2部分:病原微生物菌(毒)種保藏中心
- 企業(yè)EHS風(fēng)險(xiǎn)管理基礎(chǔ)智慧樹(shù)知到答案章節(jié)測(cè)試2023年華東理工大學(xué)
- 《解放戰(zhàn)爭(zhēng)》(共48張PPT)
- 借調(diào)人員年終總結(jié)模板【5篇】
- GB 1886.342-2021食品安全國(guó)家標(biāo)準(zhǔn)食品添加劑硫酸鋁銨
評(píng)論
0/150
提交評(píng)論