版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年浙江省衢州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
2.A.A.0B.1/2C.1D.∞
3.
A.1B.0C.-1D.-2
4.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
5.
6.
7.
8.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx
9.
10.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x
11.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
12.A.3x2+C
B.
C.x3+C
D.
13.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
14.
15.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
16.
17.A.A.2B.1C.0D.-1
18.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
19.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
20.
二、填空題(20題)21.設(shè),則y'=______。
22.
23.
24.
25.
26.
27.
28.函數(shù)y=cosx在[0,2π]上滿足羅爾定理,則ξ=______.
29.
30.
31.
32.
33.設(shè)y=e3x知,則y'_______。
34.
35.
36.設(shè)函數(shù)x=3x+y2,則dz=___________
37.
38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
42.
43.證明:
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.
46.
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.求微分方程y"-4y'+4y=e-2x的通解.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.
52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.
54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
55.
56.求曲線在點(diǎn)(1,3)處的切線方程.
57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
58.將f(x)=e-2X展開為x的冪級(jí)數(shù).
59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
60.求微分方程的通解.
四、解答題(10題)61.
62.
63.
64.設(shè)函數(shù)f(x)=ax3+bx2+cx+d,問常數(shù)a,b,c滿足什么關(guān)系時(shí),f(x)分別沒有極值、可能有一個(gè)極值、可能有兩個(gè)極值?
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.A
2.A
3.A
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)公式.
可知應(yīng)選A.
4.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
5.A
6.B
7.C
8.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
9.A
10.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
11.A
12.B
13.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
14.D
15.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
16.B
17.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
18.D解析:
19.A
20.C
21.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
22.-3e-3x-3e-3x
解析:
23.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于所給極限為“”型極限,由極限四則運(yùn)算法則有
24.
25.5
26.1/2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于
27.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
28.π
29.
解析:
30.
31.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
32.
33.3e3x
34.
35.
36.
37.
解析:
38.0
39.(02)(0,2)解析:
40.x—arctanx+C.
本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.
41.
42.
43.
44.
45.
46.
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
48.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
49.由二重積分物理意義知
50.
51.
則
52.
53.由一階線性微分方程通解公式有
54.函數(shù)的定義域?yàn)?/p>
注意
55.
56.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.
列表:
說(shuō)明
58.
59.由等價(jià)無(wú)窮小量的定義可知
60.
61.
62.
63.
64.解
65.
66.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.
這是解題的關(guān)鍵!為了能求出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 37752.5-2024工業(yè)爐及相關(guān)工藝設(shè)備安全第5部分:鋼帶連續(xù)退火爐
- 防雨雪冰凍應(yīng)急演練
- 頸椎病的預(yù)防與照護(hù)
- 花生酥課件教學(xué)課件
- 零售年中述職報(bào)告
- 精神科阿爾茨海默病
- 2.2 課時(shí)2 離子反應(yīng) 課件 上學(xué)期化學(xué)魯科版(2019)必修第一冊(cè)
- 超市防盜標(biāo)簽的種類和使用方法
- 初中體育教案課后反思
- 角的平分線的性質(zhì)說(shuō)課稿
- 《兒童支氣管哮喘診斷與防治指南》解讀-PPT課件
- 亞朵酒店集團(tuán) 員工入職培訓(xùn)計(jì)劃
- 疏浚工程(絞吸船)施工方案
- 營(yíng)運(yùn)橋梁變形監(jiān)測(cè)報(bào)告
- 小班繪本故事《我的門》
- 公司企業(yè)保密知識(shí)培訓(xùn)(精品推薦)
- 220KV輸電線路工程施工組織設(shè)計(jì)
- 高爾斯華綏《品質(zhì)》
- 稻瘟病及其研究成果
- 生物質(zhì)炭化技術(shù)
- 物理化學(xué):第二章 熱力學(xué)第二定律
評(píng)論
0/150
提交評(píng)論