




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定2.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時,按下后會變成1.(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時,按下后會變成0.2.(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時,按下后會變成3.若熒幕顯示的數(shù)為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當(dāng)他按了第100下后熒幕顯示的數(shù)是多少()A.0.01 B.0.1 C.10 D.1003.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:14.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°5.某射擊選手10次射擊成績統(tǒng)計結(jié)果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、106.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐7.已知M,N,P,Q四點的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補8.如果一個正多邊形內(nèi)角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.9.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣110.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.11.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.1212.如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設(shè)P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.飛機著陸后滑行的距離S(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機著陸后滑行_____秒停下.14.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.15.函數(shù)y=中自變量x的取值范圍是_____.16.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標(biāo)原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.17.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.18.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學(xué)記數(shù)法表示為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.20.(6分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.21.(6分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).22.(8分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.23.(8分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時,點P與點A重合;當(dāng)傘慢慢撐開時,動點P由A向B移動;當(dāng)點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).24.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.25.(10分)某中學(xué)開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.
請你根據(jù)圖中信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_____°;
(2)補全條形統(tǒng)計圖;
(3)該校共有學(xué)生1200人,試估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).26.(12分)某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;求購買一個甲種足球、一個乙種足球各需多少元;2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學(xué)校最多可購買多少個乙種足球?27.(12分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當(dāng)x=9時,∴球能過球網(wǎng),當(dāng)x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應(yīng)用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.2、B【解析】
根據(jù)題中的按鍵順序確定出顯示的數(shù)即可.【詳解】解:根據(jù)題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點睛】此題考查了計算器﹣數(shù)的平方,弄清按鍵順序是解本題的關(guān)鍵.3、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,屬于中考常考題型.4、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.5、B【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).6、A【解析】
側(cè)面為長方形,底面為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.故本題選擇A.【點睛】會觀察圖形的特征,依據(jù)側(cè)面和底面的圖形確定該幾何體是解題的關(guān)鍵.7、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.8、A【解析】
首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內(nèi)角和與外角和的知識.注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.9、A【解析】
根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.10、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.11、B【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結(jié)合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.12、A【解析】
解:∵二次函數(shù)的圖象開口向上,∴a>1.∵對稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點坐標(biāo)是(1,﹣2),過(1,1)點,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,利用數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
飛機停下時,也就是滑行距離最遠時,即在本題中需求出s最大時對應(yīng)的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時,飛機才能停下來.故答案為1.【點睛】本題考查了二次函數(shù)的應(yīng)用.解題時,利用配方法求得t=2時,s取最大值.14、6【解析】
根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關(guān)鍵.15、x≥﹣且x≠1.【解析】
根據(jù)分式有意義的條件、二次根式有意義的條件列式計算.【詳解】由題意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案為:x≥-且x≠1.【點睛】本題考查的是函數(shù)自變量的取值范圍,①當(dāng)表達式的分母不含有自變量時,自變量取全體實數(shù).②當(dāng)表達式的分母中含有自變量時,自變量取值要使分母不為零.③當(dāng)函數(shù)的表達式是偶次根式時,自變量的取值范圍必須使被開方數(shù)不小于零.16、.【解析】
過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設(shè)OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標(biāo)為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標(biāo)為(,),將點C的坐標(biāo)代入反比例函數(shù)解析式可得:,將點D的坐標(biāo)代入反比例函數(shù)解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數(shù)圖象上點的坐標(biāo)特征;2.等邊三角形的性質(zhì).17、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學(xué)記數(shù)法表示為,故答案為:.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計20、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質(zhì)可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點:圓周角定理;全等三角形的判定及性質(zhì);切線的判定定理21、(1)詳見解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,【點睛】本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計算,連接OC是解題的關(guān)鍵.22、證明見解析【解析】試題分析:由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結(jié)合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結(jié)合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結(jié)合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)證明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四邊形ABCD是菱形.23、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】
(1)根據(jù)題意,得AC=CN+PN,進一步求得AB的長,即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質(zhì)即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長,再根據(jù)相似三角形的對應(yīng)邊的比相等,求得圓的半徑即可.【詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當(dāng)∠CPN=60°時,x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分線,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9?MB1=9?(6x﹣x1),∴y=π?EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【點睛】此題主要考查了相似三角形的應(yīng)用以及菱形的性質(zhì)和二次函數(shù)的應(yīng)用,難點是第(3)問,熟練運用菱形的性質(zhì)、相似三角形的性質(zhì)和二次函數(shù)的實際應(yīng)用.24、;【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當(dāng)a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【點睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進行約分,注意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供用苗木合同范本
- 加盟教育協(xié)議合同范本
- 與收款合同范本
- 儀器協(xié)議合同范本
- 化驗用品購銷合同范本
- 2024年四川旅游學(xué)院引進考試真題
- 2024年省廈門市梧村小學(xué)招聘考試真題
- 第二單元 遵守社會規(guī)則 大單元教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版道德與法治八年級上冊
- 買賣物品交易合同范本
- 保溫發(fā)泡板合同范本
- 銑床工安全技術(shù)操作規(guī)程培訓(xùn)
- 2024年山東淄博市城市資產(chǎn)運營有限公司招聘筆試參考題庫含答案解析
- 視頻監(jiān)控系統(tǒng)驗收測試報告
- 醫(yī)院骨科專病數(shù)據(jù)庫建設(shè)需求
- 三角函數(shù)的誘導(dǎo)公式(一)完整版
- 三年級下冊混合計算100題及答案
- 中小學(xué)幼兒園安全風(fēng)險防控工作規(guī)范
- ESD技術(shù)要求和測試方法
- 正確認識民族與宗教的關(guān)系堅持教育與宗教相分離
- 宜黃縣二都鎮(zhèn)高山飾面用花崗巖開采以及深加工項目環(huán)評報告
- 血液科護士的惡性腫瘤護理
評論
0/150
提交評論