版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
會計學(xué)111回歸分析的基本思想及其初步應(yīng)用2問題1:正方形的面積y與正方形的邊長x之間的函數(shù)關(guān)系是y=x2確定性關(guān)系問題2:某水田水稻產(chǎn)量y與施肥量x之間是否-------有一個確定性的關(guān)系?復(fù)習(xí)、變量之間的兩種關(guān)系第1頁/共31頁自變量取值一定時,因變量的取值帶有一定隨機(jī)性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系。1、定義:
1):相關(guān)關(guān)系是一種不確定性關(guān)系;注對具有相關(guān)關(guān)系的兩個變量進(jìn)行統(tǒng)計分析的方法叫回歸分析。2):第2頁/共31頁2、現(xiàn)實生活中存在著大量的相關(guān)關(guān)系。
如:人的身高與年齡;產(chǎn)品的成本與生產(chǎn)數(shù)量;商品的銷售額與廣告費(fèi);家庭的支出與收入。第3頁/共31頁3、對兩個變量進(jìn)行的線性分析叫做線性回歸分析。3、回歸直線方程:2.相應(yīng)的直線叫做回歸直線。1、所求直線方程叫做回歸直---線方程;其中第4頁/共31頁相關(guān)系數(shù)
1.計算公式2.相關(guān)系數(shù)的性質(zhì)(1)|r|≤1.(2)|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。畣栴}:達(dá)到怎樣程度,x、y線性相關(guān)呢?它們的相關(guān)程度怎樣呢?第5頁/共31頁負(fù)相關(guān)正相關(guān)第6頁/共31頁相關(guān)系數(shù)r>0正相關(guān);r<0負(fù)相關(guān).第7頁/共31頁例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重數(shù)據(jù)如表1-1所示。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報她的體重的回歸方程,并預(yù)報一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重第8頁/共31頁分析:由于問題中要求根據(jù)身高預(yù)報體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點圖;第9頁/共31頁解:1、選取身高為自變量x,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。3、從散點圖還看到,樣本點散布在某一條直線的附近,而不是在一條直線上,所以不能用一次函數(shù)y=bx+a描述它們關(guān)系。探究:身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?第10頁/共31頁我們可以用下面的線性回歸模型來表示:y=bx+a+e,其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。第11頁/共31頁思考:產(chǎn)生隨機(jī)誤差項e的原因是什么?隨機(jī)誤差e的來源(可以推廣到一般):1、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習(xí)慣、生長環(huán)境等因素;2、用線性回歸模型近似真實模型所引起的誤差;3、身高y的觀測誤差。
以上三項誤差越小,說明我們的回歸模型的擬合效果越好。第12頁/共31頁函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:可以提供選擇模型的準(zhǔn)則第13頁/共31頁函數(shù)模型與回歸模型之間的差別函數(shù)模型:回歸模型:
線性回歸模型y=bx+a+e增加了隨機(jī)誤差項e,因變量y的值由自變量x和隨機(jī)誤差項e共同確定,即自變量x只能解析部分y的變化。
在統(tǒng)計中,我們也把自變量x稱為解析變量,因變量y稱為預(yù)報變量。所以,對于身高為172cm的女大學(xué)生,由回歸方程可以預(yù)報其體重為
第14頁/共31頁5943616454505748體重/kg170155165175170157165165身高/cm87654321編號
那么,在這個總的效應(yīng)(總偏差平方和)中,有多少來自于解析變量(身高)?有多少來自于隨機(jī)誤差?
假設(shè)隨機(jī)誤差對體重沒有影響,也就是說,體重僅受身高的影響,那么散點圖中所有的點將完全落在回歸直線上。但是,在圖中,數(shù)據(jù)點并沒有完全落在回歸直線上。這些點散布在回歸直線附近,所以一定是隨機(jī)誤差把這些點從回歸直線上“推”開了。在例1中,殘差平方和約為128.361。
因此,數(shù)據(jù)點和它在回歸直線上相應(yīng)位置的差異是隨機(jī)誤差的效應(yīng),稱為殘差。例如,編號為6的女大學(xué)生,計算隨機(jī)誤差的效應(yīng)(殘差)為:對每名女大學(xué)生計算這個差異,然后分別將所得的值平方后加起來,用數(shù)學(xué)符號稱為殘差平方和,它代表了隨機(jī)誤差的效應(yīng)。表示為:即,第15頁/共31頁
由于解析變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)為354,而隨機(jī)誤差的效應(yīng)為128.361,所以解析變量的效應(yīng)為解析變量和隨機(jī)誤差的總效應(yīng)(總偏差平方和)
=解析變量的效應(yīng)(回歸平方和)+隨機(jī)誤差的效應(yīng)(殘差平方和)354-128.361=225.639這個值稱為回歸平方和。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第16頁/共31頁樣本決定系數(shù)
(判定系數(shù)R2
)1.回歸平方和占總偏差平方和的比例反映回歸直線的擬合程度取值范圍在[0,1]之間
R21,說明回歸方程擬合的越好;R20,說明回歸方程擬合的越差判定系數(shù)等于相關(guān)系數(shù)的平方,即R2=(r)2第17頁/共31頁顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。在線性回歸模型中,R2表示解析變量對預(yù)報變量變化的貢獻(xiàn)率。
R2越接近1,表示回歸的效果越好(因為R2越接近1,表示解析變量和預(yù)報變量的線性相關(guān)性越強(qiáng))。
如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型??偟膩碚f:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第18頁/共31頁1354總計0.36128.361殘差變量0.64225.639隨機(jī)誤差比例平方和來源表1-3
從表3-1中可以看出,解析變量對總效應(yīng)約貢獻(xiàn)了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機(jī)誤差貢獻(xiàn)了剩余的36%。所以,身高對體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計算公式是第19頁/共31頁表3-2列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。
在研究兩個變量間的關(guān)系時,首先要根據(jù)散點圖來粗略判斷它們是否線性相關(guān),是否可以用回歸模型來擬合數(shù)據(jù)。殘差分析與殘差圖的定義:
然后,我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。編號12345678身高/cm165165157170175165155170體重/kg4857505464614359殘差-6.3732.6272.419-4.6181.1376.627-2.8830.382
我們可以利用圖形來分析殘差特性,作圖時縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重估計值等,這樣作出的圖形稱為殘差圖。第20頁/共31頁2023/1/16殘差圖的制作及作用。坐標(biāo)縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點應(yīng)該分布在以橫軸為心的帶形區(qū)域;對于遠(yuǎn)離橫軸的點,要特別注意。身高與體重殘差圖異常點
錯誤數(shù)據(jù)模型問題
幾點說明:第一個樣本點和第6個樣本點的殘差比較大,需要確認(rèn)在采集過程中是否有人為的錯誤。如果數(shù)據(jù)采集有錯誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯誤,則需要尋找其他的原因。另外,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報精度越高。第21頁/共31頁例2、在一段時間內(nèi),某中商品的價格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。價格x1416182022需求量Y1210753解:第22頁/共31頁練習(xí)、在一段時間內(nèi),某中商品的價格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。價格x1416182022需求量Y1210753列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4第23頁/共31頁例2:一只紅鈴蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù),試建立y與x之間的回歸方程解:1)作散點圖;從散點圖中可以看出產(chǎn)卵數(shù)和溫度之間的關(guān)系并不能用線性回歸模型來很好地近似。這些散點更像是集中在一條指數(shù)曲線或二次曲線的附近。第24頁/共31頁解:令則z=bx+a,(a=lnc1,b=c2),列出變換后數(shù)據(jù)表并畫出x與z的散點圖x和z之間的關(guān)系可以用線性回歸模型來擬合x21232527293235z1.9462.3983.0453.1784.194.7455.784第25頁/共31頁2)用y=c3x2+c4模型,令,則y=c3t+c4,列出變換后數(shù)據(jù)表并畫出t與y的散點圖散點并不集中在一條直線的附近,因此用線性回歸模型擬合他們的效果不是最好的。t44152962572984110241225y711212466115325第26頁/共31頁殘差表編號1234567x21232527293235y711212466115325e(1)0.52-0.1671.76-9.1498.889-14.15332.928e(2)47.719.397-5.835-41.003-40.107-58.26877.965非線性回歸方程二次回歸方程殘差公式第27頁/共31頁在此處可以引導(dǎo)學(xué)生體會應(yīng)用統(tǒng)計方法解決實際問題需要注意的問題:對于同樣的數(shù)據(jù),有不同的統(tǒng)計方法進(jìn)行分析,我們要用最有效的方法分析數(shù)據(jù)?,F(xiàn)在有三個不同的回歸模型可供選擇來擬合紅鈴蟲的產(chǎn)卵數(shù)與溫度數(shù)據(jù),他們分別是:可以利用直觀(散點圖和殘差圖)、相關(guān)指數(shù)來確定哪一個模型的擬合效果更好。第28頁/共31頁用身高預(yù)報體重時,需要注意下列問題:1、回歸方程只適用于我們所研究的樣本的總體;2、我們所建立的回歸方程一般都有時間性;3、樣本采集的范圍會影響回歸方程的適用范圍;4、不能期望回歸方程得到的預(yù)報值就是預(yù)報變量的精確值。事實上,它是預(yù)報變量的可能取值的平均值?!@些問題也使用于其他問題。涉及到統(tǒng)計的一些思想:模型適用的總體;模型的時間性;樣本的取值范圍對模型的影響;模型預(yù)報結(jié)果的正確理解。小結(jié)第29頁/共31頁
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)地坪承包2024協(xié)議樣式版B版
- 2024年音響產(chǎn)品售后服務(wù)與維修合同
- 2024年飯店品牌授權(quán)加盟合同3篇
- 2024年輔導(dǎo)班教學(xué)服務(wù)合作合同版B版
- 2025年車輛租賃與廣告投放合作合同范本3篇
- 2024年革新版:無人機(jī)物流配送服務(wù)合同
- 2024氣象服務(wù)與航空航天器氣象保障合同范本3篇
- 2025年菜鳥驛站新能源汽車充電站運(yùn)營權(quán)轉(zhuǎn)讓合同3篇
- 2025年度智能電網(wǎng)調(diào)度控制系統(tǒng)軟件開發(fā)框架合同3篇
- 《換能器技術(shù)》課件
- 2025年中國華能集團(tuán)限公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 數(shù)字媒體技術(shù)應(yīng)用基礎(chǔ)知識單選題及答案解析
- 面部抗皺培訓(xùn)課件
- GB/T 45002-2024水泥膠砂保水率測定方法
- 2025年高考?xì)v史復(fù)習(xí)之小題狂練300題(選擇題):世界多極化與經(jīng)濟(jì)全球化(20題)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之1:0 引言(雷澤佳編制-2025B0)
- 生產(chǎn)安全事故事件管理知識培訓(xùn)課件
- 項目施工單位與當(dāng)?shù)卣按迕竦膮f(xié)調(diào)措施
- 浙江省寧波市寧海縣2023-2024學(xué)年三年級上學(xué)期語文期末試卷
- 廣東省廣州海珠區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 腫瘤科患者安全管理
評論
0/150
提交評論