版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年遼寧省葫蘆島市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
3.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.無法確定斂散性
4.
5.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸
6.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
7.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
8.
9.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
10.
11.()。A.
B.
C.
D.
12.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
13.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
14.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.415.A.0B.2C.2f(-1)D.2f(1)16.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
17.A.A.0
B.
C.arctanx
D.
18.A.A.4B.3C.2D.1
19.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
20.
21.
22.
23.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面
24.
25.
26.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
27.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
28.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
29.
30.A.A.Ax
B.
C.
D.
31.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確32.
A.
B.
C.
D.
33.
34.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
35.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無法判定斂散性
36.
37.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面38.等于()。A.-1B.-1/2C.1/2D.1
39.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。
A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
40.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
41.A.
B.x2
C.2x
D.
42.()A.A.條件收斂
B.絕對(duì)收斂
C.發(fā)散
D.收斂性與k有關(guān)
43.等于().A.A.2B.1C.1/2D.044.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
45.
46.()A.A.1B.2C.1/2D.-1
47.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
48.
49.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-150.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)二、填空題(20題)51.
52.
53.54.55.設(shè)y=sin2x,則y'______.
56.
57.
58.59.
60.61.
62.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。
63.
64.
65.設(shè)y=cosx,則y"=________。
66.設(shè)函數(shù)y=x2+sinx,則dy______.67.微分方程y''+6y'+13y=0的通解為______.
68.
69.
70.三、計(jì)算題(20題)71.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.72.求曲線在點(diǎn)(1,3)處的切線方程.73.
74.
75.
76.
77.
78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
80.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則82.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).83.證明:84.將f(x)=e-2X展開為x的冪級(jí)數(shù).
85.求微分方程y"-4y'+4y=e-2x的通解.
86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.87.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.88.89.求微分方程的通解.90.四、解答題(10題)91.92.
93.求由曲線y=1-x2在點(diǎn)(1/2,3/4]處的切線與該曲線及x軸所圍圖形的面積A。
94.
95.
96.
97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.
=________。
六、解答題(0題)102.
參考答案
1.A
2.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
3.A本題考察了級(jí)數(shù)的絕對(duì)收斂的知識(shí)點(diǎn)。
4.B
5.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由
6.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
7.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
8.A解析:
9.B
10.C
11.C由不定積分基本公式可知
12.D
13.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
14.B
15.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
16.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
17.A
18.C
19.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
20.C
21.D
22.D
23.A
24.C
25.D
26.A
27.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
28.D
29.A
30.D
31.D
32.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
33.D
34.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
35.C
36.A
37.C
38.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
39.A
40.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
41.C
42.A
43.D本題考查的知識(shí)點(diǎn)為重要極限公式與無窮小性質(zhì).
注意:極限過程為x→∞,因此
不是重要極限形式!由于x→∞時(shí),1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知
44.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
45.B
46.C由于f'(2)=1,則
47.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
48.D解析:
49.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
50.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性.
由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.51.5.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
52.11解析:
53.
54.
本題考查的知識(shí)點(diǎn)為定積分的基本公式.
55.2sinxcosx本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.
56.2yex+x
57.2/358.F(sinx)+C.
本題考查的知識(shí)點(diǎn)為不定積分的換元法.
59.
60.
61.
本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系.
由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
62.(03)
63.3
64.5
65.-cosx66.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,
可知dy=(2x+cosx)dx.
解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.67.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
68.1
69.(1+x)2
70.
71.由二重積分物理意義知
72.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
73.
74.
75.
則
76.由一階線性微分方程通解公式有
77.
78.
79.
80.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%81.由等價(jià)無窮小量的定義可知
82.
列表:
說明
83.
84.
85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
86.
87.函數(shù)的定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年金融機(jī)構(gòu)與中小企業(yè)公對(duì)公信用貸款合同3篇
- 美食廣場(chǎng)食品安全檢測(cè)制度
- 交通運(yùn)輸設(shè)備采購(gòu)招投標(biāo)流程
- 網(wǎng)絡(luò)安全防護(hù)指南
- 填筑土方施工合同
- 倉(cāng)儲(chǔ)物流中心續(xù)租合同
- 2024年水電設(shè)備安全認(rèn)證與檢測(cè)服務(wù)合同3篇
- 金融行業(yè)總監(jiān)理合同模板
- 房屋共同使用權(quán)保險(xiǎn)合同
- 醫(yī)療設(shè)備采購(gòu)項(xiàng)目承攬
- 2024屆廣東省深圳市羅湖區(qū)中考適應(yīng)性考試化學(xué)試題含解析
- 醫(yī)保信息系統(tǒng)管理制度范文
- 停車場(chǎng)服務(wù)培訓(xùn)課件
- 《工業(yè)數(shù)據(jù)采集技術(shù)》課程標(biāo)準(zhǔn)
- 半導(dǎo)體芯片知識(shí)講座
- 智慧農(nóng)業(yè)的無人機(jī)與遙感技術(shù)
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量檢測(cè)生物試題(含答案解析)
- 蘇教版三年級(jí)上冊(cè)豎式計(jì)算練習(xí)300題及答案
- 健康體檢科工作總結(jié)
- 循證護(hù)理在骨科中的護(hù)理
- 纏中說禪公式代碼
評(píng)論
0/150
提交評(píng)論