版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
深度學(xué)習(xí)的基本理論與方法王雪2014年12月24日目錄概述深度學(xué)習(xí)簡介深度學(xué)習(xí)的訓(xùn)練過程深度學(xué)習(xí)的具體模型及方法深度學(xué)習(xí)的應(yīng)用總結(jié)展望參考文獻(xiàn)概述2012年6月,《紐約時(shí)報(bào)》披露了GoogleBrain項(xiàng)目,吸引了公眾的廣泛關(guān)注。這個(gè)項(xiàng)目是由著名的斯坦福大學(xué)機(jī)器學(xué)習(xí)教授AndrewNg和在大規(guī)模計(jì)算機(jī)系統(tǒng)方面的世界頂尖專家JeffDean共同主導(dǎo),用16000個(gè)CPUCore的并行計(jì)算平臺(tái)訓(xùn)練一種稱為“深層神經(jīng)網(wǎng)絡(luò)”(DNN,DeepNeuralNetworks)的機(jī)器學(xué)習(xí)模型,在語音識(shí)別和圖像識(shí)別等領(lǐng)域獲得了巨大的成功。2012年11月,微軟在中國天津的一次活動(dòng)上公開演示了一個(gè)全自動(dòng)的同聲傳譯系統(tǒng),講演者用英文演講,后臺(tái)的計(jì)算機(jī)一氣呵成自動(dòng)完成語音識(shí)別、英中機(jī)器翻譯,以及中文語音合成,效果非常流暢。據(jù)報(bào)道,后面支撐的關(guān)鍵技術(shù)也是DNN,或者深度學(xué)習(xí)(DL,DeepLearning)。2013年1月,在百度的年會(huì)上,創(chuàng)始人兼CEO李彥宏高調(diào)宣布要成立百度研究院,其中第一個(gè)重點(diǎn)方向就是深度學(xué)習(xí),并為此而成立InstituteofDeepLearning(IDL)。這是百度成立十多年以來第一次成立研究院。2013年4月,《麻省理工學(xué)院技術(shù)評(píng)論》雜志將深度學(xué)習(xí)列為2013年十大突破性技術(shù)(BreakthroughTechnology)之首。百度首席科學(xué)家吳恩達(dá)2014年12月19日表示,百度在深度學(xué)習(xí)領(lǐng)域的發(fā)展已經(jīng)超過了谷歌與蘋果,如果這項(xiàng)技術(shù)真具有劃時(shí)代的革命意義,那么百度就此開啟并且引領(lǐng)了語音2.0時(shí)代,也即是人工智能時(shí)代的一個(gè)重要分支,改變搜索,更改變交互。概述深度學(xué)習(xí):一種基于無監(jiān)督特征學(xué)習(xí)和特征層次結(jié)構(gòu)的學(xué)習(xí)方法可能的的名稱:深度學(xué)習(xí)特征學(xué)習(xí)無監(jiān)督特征學(xué)習(xí)概述良好的特征表達(dá),對(duì)最終算法的準(zhǔn)確性起了非常關(guān)鍵的作用;識(shí)別系統(tǒng)主要的計(jì)算和測試工作耗時(shí)主要集中在特征提取部分;特征的樣式目前一般都是人工設(shè)計(jì)的,靠人工提取特征;手工選取特征費(fèi)時(shí)費(fèi)力,需要啟發(fā)式專業(yè)知識(shí),很大程度上靠經(jīng)驗(yàn)和運(yùn)氣;是否能自動(dòng)地學(xué)習(xí)特征?Low-levelsensingPre-processingFeatureextract.FeatureselectionInference:prediction,recognition傳統(tǒng)的模式識(shí)別方法:深度學(xué)習(xí)就是用來解答這個(gè)問題的?。\層學(xué)習(xí)淺層學(xué)習(xí)——人工神經(jīng)網(wǎng)絡(luò)(BP算法)
采用BP算法調(diào)整參數(shù),即采用迭代算法來訓(xùn)練整個(gè)網(wǎng)絡(luò)。隨機(jī)設(shè)定初值,計(jì)算當(dāng)前網(wǎng)絡(luò)的輸出,然后根據(jù)當(dāng)前輸出和樣本真實(shí)標(biāo)簽之間的差去改變前面各層的參數(shù),直到收斂,整體是一個(gè)梯度下降法。神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)的局限性:1)比較容易過擬合,參數(shù)比較難調(diào)整,而且需要不少技巧;2)訓(xùn)練速度比較慢,在層次比較少(小于等于3)的情況下效果并不比其它方法更優(yōu);深度學(xué)習(xí)2006年,加拿大多倫多大學(xué)教授、機(jī)器學(xué)習(xí)領(lǐng)域的泰斗GeoffreyHinton在《科學(xué)》上發(fā)表論文提出深度學(xué)習(xí)主要觀點(diǎn):1)多隱層的人工神經(jīng)網(wǎng)絡(luò)具有優(yōu)異的特征學(xué)習(xí)能力,學(xué)習(xí)得到的特征對(duì)數(shù)據(jù)有更本質(zhì)的刻畫,從而有利于可視化或分類;2)深度神經(jīng)網(wǎng)絡(luò)在訓(xùn)練上的難度,可以通過“逐層初始化”(layer-wisepre-training)來有效克服,逐層初始化可通過無監(jiān)督學(xué)習(xí)實(shí)現(xiàn)的。采用逐層訓(xùn)練機(jī)制的原因在于如果采用BP機(jī)制,對(duì)于一個(gè)deepnetwork(7層以上),殘差傳播到最前面的層將變得很小,出現(xiàn)所謂的gradientdiffusion(梯度擴(kuò)散)。深度學(xué)習(xí)本質(zhì):通過構(gòu)建多隱層的模型和海量訓(xùn)練數(shù)據(jù)(可為無標(biāo)簽數(shù)據(jù)),來學(xué)習(xí)更有用的特征,從而最終提升分類或預(yù)測的準(zhǔn)確性?!吧疃饶P汀笔鞘侄?,“特征學(xué)習(xí)”是目的。與淺層學(xué)習(xí)區(qū)別:1)強(qiáng)調(diào)了模型結(jié)構(gòu)的深度,通常有5-10多層的隱層節(jié)點(diǎn);2)明確突出了特征學(xué)習(xí)的重要性,通過逐層特征變換,將樣本在原空間的特征表示變換到一個(gè)新特征空間,從而使分類或預(yù)測更加容易。與人工規(guī)則構(gòu)造特征的方法相比,利用大數(shù)據(jù)來學(xué)習(xí)特征,更能夠刻畫數(shù)據(jù)的豐富內(nèi)在信息。深度學(xué)習(xí)好處:可通過學(xué)習(xí)一種深層非線性網(wǎng)絡(luò)結(jié)構(gòu),實(shí)現(xiàn)復(fù)雜函數(shù)逼近,表征輸入數(shù)據(jù)分布式表示。深度學(xué)習(xí)訓(xùn)練過程不采用BP算法的原因(1)反饋調(diào)整時(shí),梯度越來越稀疏,從頂層越往下,誤差校正信號(hào)越來越??;(2)收斂易至局部最小,由于是采用隨機(jī)值初始化,當(dāng)初值是遠(yuǎn)離最優(yōu)區(qū)域時(shí)易導(dǎo)致這一情況;(3)BP算法需要有標(biāo)簽數(shù)據(jù)來訓(xùn)練,但大部分?jǐn)?shù)據(jù)是無標(biāo)簽的;深度學(xué)習(xí)訓(xùn)練過程第一步:采用自下而上的無監(jiān)督學(xué)習(xí)1)逐層構(gòu)建單層神經(jīng)元。2)每層采用wake-sleep算法進(jìn)行調(diào)優(yōu)。每次僅調(diào)整一層,逐層調(diào)整。這個(gè)過程可以看作是一個(gè)featurelearning的過程,是和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)區(qū)別最大的部分。深度學(xué)習(xí)訓(xùn)練過程wake-sleep算法:1)wake階段:認(rèn)知過程,通過下層的輸入特征(Input)和向上的認(rèn)知(Encoder)權(quán)重產(chǎn)生每一層的抽象表示(Code),再通過當(dāng)前的生成(Decoder)權(quán)重產(chǎn)生一個(gè)重建信息(Reconstruction),計(jì)算輸入特征和重建信息殘差,使用梯度下降修改層間的下行生成(Decoder)權(quán)重。也就是“如果現(xiàn)實(shí)跟我想象的不一樣,改變我的生成權(quán)重使得我想象的東西變得與現(xiàn)實(shí)一樣”。2)sleep階段:生成過程,通過上層概念(Code)和向下的生成(Decoder)權(quán)重,生成下層的狀態(tài),再利用認(rèn)知(Encoder)權(quán)重產(chǎn)生一個(gè)抽象景象。利用初始上層概念和新建抽象景象的殘差,利用梯度下降修改層間向上的認(rèn)知(Encoder)權(quán)重。也就是“如果夢中的景象不是我腦中的相應(yīng)概念,改變我的認(rèn)知權(quán)重使得這種景象在我看來就是這個(gè)概念”。深度學(xué)習(xí)訓(xùn)練過程EncoderDecoderInputImageClasslabel.FeaturesEncoderDecoderFeaturesEncoderDecoder深度學(xué)習(xí)訓(xùn)練過程第二步:自頂向下的監(jiān)督學(xué)習(xí)
這一步是在第一步學(xué)習(xí)獲得各層參數(shù)進(jìn)的基礎(chǔ)上,在最頂?shù)木幋a層添加一個(gè)分類器(例如羅杰斯特回歸、SVM等),而后通過帶標(biāo)簽數(shù)據(jù)的監(jiān)督學(xué)習(xí),利用梯度下降法去微調(diào)整個(gè)網(wǎng)絡(luò)參數(shù)。深度學(xué)習(xí)的第一步實(shí)質(zhì)上是一個(gè)網(wǎng)絡(luò)參數(shù)初始化過程。區(qū)別于傳統(tǒng)神經(jīng)網(wǎng)絡(luò)初值隨機(jī)初始化,深度學(xué)習(xí)模型是通過無監(jiān)督學(xué)習(xí)輸入數(shù)據(jù)的結(jié)構(gòu)得到的,因而這個(gè)初值更接近全局最優(yōu),從而能夠取得更好的效果。深度學(xué)習(xí)的具體模型及方法自動(dòng)編碼器(AutoEncoder)
稀疏自動(dòng)編碼器(SparseAutoEncoder)
降噪自動(dòng)編碼器(DenoisingAutoEncoders)深度置信網(wǎng)絡(luò)(DeepBeliefNetworks—DBN)卷積神經(jīng)網(wǎng)絡(luò)(CNNs)深度學(xué)習(xí)的具體模型及方法自動(dòng)編碼器(AutoEncoder)這個(gè)AutoEncoder還不能用來分類數(shù)據(jù),因?yàn)樗€沒有學(xué)習(xí)如何去連結(jié)一個(gè)輸入和一個(gè)類。它只是學(xué)會(huì)了如何去重構(gòu)或者復(fù)現(xiàn)它的輸入而已。在AutoEncoder的最頂?shù)木幋a層添加一個(gè)分類器(例如羅杰斯特回歸、SVM等),然后通過標(biāo)準(zhǔn)的多層神經(jīng)網(wǎng)絡(luò)的監(jiān)督訓(xùn)練方法(梯度下降法)去訓(xùn)練。我們需要將最后層的特征code輸入到最后的分類器,通過有標(biāo)簽樣本,通過監(jiān)督學(xué)習(xí)進(jìn)行微調(diào),這也分兩種深度學(xué)習(xí)的具體模型及方法自動(dòng)編碼器(AutoEncoder)只調(diào)整分類器(黑色部分)通過有標(biāo)簽樣本,微調(diào)整個(gè)系統(tǒng):(如果有足夠多的數(shù)據(jù),這個(gè)是最好的。end-to-endlearning端對(duì)端學(xué)習(xí))
在研究中可以發(fā)現(xiàn),如果在原有的特征中加入這些自動(dòng)學(xué)習(xí)得到的特征可以大大提高精確度,甚至在分類問題中比目前最好的分類算法效果還要好!深度學(xué)習(xí)的具體模型及方法稀疏自動(dòng)編碼器(SparseAutoEncoder)在AutoEncoder的基礎(chǔ)上加上L1的Regularity限制(L1主要是約束每一層中的節(jié)點(diǎn)中大部分都要為0,只有少數(shù)不為0,這就是Sparse名字的來源)在計(jì)算機(jī)視覺中,稀疏性的約束是使得學(xué)習(xí)到的表達(dá)更有意義的一種重要約束;深度學(xué)習(xí)中要優(yōu)化的參數(shù)非常多,如果不加入稀疏性的約束往往會(huì)使得學(xué)習(xí)到的權(quán)重矩陣為單位矩陣,這樣就失去了深度的意義
深度學(xué)習(xí)的具體模型及方法降噪自動(dòng)編碼器(DenoisingAutoEncoders)
在自動(dòng)編碼器的基礎(chǔ)上,對(duì)訓(xùn)練數(shù)據(jù)加入噪聲,自動(dòng)編碼器必須學(xué)習(xí)去去除這種噪聲而獲得真正的沒有被噪聲污染過的輸入。因此,這就迫使編碼器去學(xué)習(xí)輸入信號(hào)的更加魯棒的表達(dá),這也是它的泛化能力比一般編碼器強(qiáng)的原因。深度學(xué)習(xí)的具體模型及方法限制波爾茲曼機(jī)(RestrictedBoltzmannMachine)玻爾茲曼機(jī)(Boltzmannmachine)本質(zhì)上是一種能量模型。限制條件是在給定可見層或者隱層中的其中一層后,另一層的單元彼此獨(dú)立。定義:假設(shè)有一個(gè)二部圖,同層節(jié)點(diǎn)之間沒有鏈接,一層是可視層,即輸入數(shù)據(jù)層(v),一層是隱藏層(h),如果假設(shè)所有的節(jié)點(diǎn)都是隨機(jī)二值(0,1值)變量節(jié)點(diǎn),同時(shí)假設(shè)全概率分布p(v,h)滿足Boltzmann分布,我們稱這個(gè)模型RestrictedBoltzmannMachine(RBM)。深度學(xué)習(xí)的具體模型及方法限制波爾茲曼機(jī)(RestrictedBoltzmannMachine)輸入v的時(shí)候,通過p(h|v)可以得到隱藏層h,而得到隱藏層h之后,通過p(v|h)又能得到可視層,通過調(diào)整參數(shù),我們就是要使得從隱藏層得到的可視層v1與原來的可視層v如果一樣,那么得到的隱藏層就是可視層另外一種表達(dá),因此隱藏層可以作為可視層輸入數(shù)據(jù)的特征用近似極大似然隨機(jī)梯度下降算法訓(xùn)練BM,通常用蒙特卡羅馬爾可夫鏈(Monte-CarloMarkovchain,MCMC)方法來得到模型樣例限制波爾茲曼機(jī)(RBM)是一種深度學(xué)習(xí)模型。深度學(xué)習(xí)的具體模型及方法深度置信網(wǎng)絡(luò)(DeepBeliefNetworks)-DBNDeepBeliefNetworks是在靠近可視層的部分使用貝葉斯信念網(wǎng)絡(luò)(即有向圖模型),而在最遠(yuǎn)離可視層的部分使用RestrictedBoltzmannMachine的模型。深度學(xué)習(xí)的具體模型及方法卷積波爾茲曼機(jī)(ConvolutionalRBM)
CRBM是為識(shí)別二維圖像信息而特殊設(shè)計(jì)的一個(gè)多層感知器。卷積限制玻爾茲曼機(jī)的基本思想是使用卷積的方式使得圖像各個(gè)像素共享一組濾波器
濾波器卷積(權(quán)重矩陣、偏置頂共享)特點(diǎn):特征提取是不用考慮局部特征位置;減少了要學(xué)習(xí)的參數(shù)數(shù)量最大池采樣:對(duì)圖像進(jìn)行分塊,取每一塊的最大(或平均值),實(shí)現(xiàn)了平移不變性深度學(xué)習(xí)的具體模型及方法卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks)—CNNsCNN的優(yōu)點(diǎn):1、避免了顯式的特征抽取,而隱式地從訓(xùn)練數(shù)據(jù)中進(jìn)行學(xué)習(xí);2、同一特征映射面上的神經(jīng)元權(quán)值相同,從而網(wǎng)絡(luò)可以并行學(xué)習(xí),降低了網(wǎng)絡(luò)的復(fù)雜性;3、采用時(shí)間或者空間的子采樣結(jié)構(gòu),可以獲得某種程度的位移、尺度、形變魯棒性;3、輸入信息和網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)能很好的吻合,在語音識(shí)別和圖像處理方面有著獨(dú)特優(yōu)勢,成為這兩方面的研究熱點(diǎn)。卷積限制玻爾茲曼機(jī)逐層疊加,就得到卷積神經(jīng)網(wǎng)絡(luò)
深度學(xué)習(xí)的應(yīng)用語音識(shí)別語音識(shí)別系統(tǒng)長期以來,在描述每個(gè)建模單元的統(tǒng)計(jì)概率模型時(shí),大多采用的是混合高斯模型(GMM)。微軟研究院語音識(shí)別專家鄧立和俞棟從2009年開始和深度學(xué)習(xí)專家GeofferyHinton合作。2011年微軟宣布基于深度神經(jīng)網(wǎng)絡(luò)的識(shí)別系統(tǒng)取得成果并推出產(chǎn)品,徹底改變了語音識(shí)別原有的技術(shù)框架。百度在實(shí)踐中發(fā)現(xiàn),采用DNN進(jìn)行聲音建模的語音識(shí)別系統(tǒng)相比于傳統(tǒng)的GMM語音識(shí)別系統(tǒng)而言,相對(duì)誤識(shí)別率能降低25%。最終在2012年11月,百度上線了第一款基于DNN的語音搜索系統(tǒng),成為最早采用DNN技術(shù)進(jìn)行商業(yè)語音服務(wù)的公司之一。Google也采用了深層神經(jīng)網(wǎng)絡(luò)進(jìn)行聲音建模,是最早突破深層神經(jīng)網(wǎng)絡(luò)工業(yè)化應(yīng)用的企業(yè)之一。深度學(xué)習(xí)的應(yīng)用圖像識(shí)別圖像是深度學(xué)習(xí)最早嘗試的應(yīng)用領(lǐng)域。早在1989年,YannLeCun(現(xiàn)紐約大學(xué)教授)和他的同事們就發(fā)表了卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionNeuralNetworks,簡稱CNN)的工作。但是在大規(guī)模的圖像上效果不好所以沒有得到計(jì)算機(jī)視覺領(lǐng)域的足夠重視。直到2012年10月GeoffreyHinton和他的兩個(gè)學(xué)生在著名的ImageNet問題上用更深的CNN取得世界最好結(jié)果,使得圖像識(shí)別大踏步前進(jìn)。在Hinton的模型里,輸入就是圖像的像素,沒有用到任何的人工特征。百度在2012年底將深度學(xué)習(xí)技術(shù)成功應(yīng)用于自然圖像OCR識(shí)別和人臉識(shí)別等問題,并推出相應(yīng)的桌面和移動(dòng)搜索產(chǎn)品,2013年,深度學(xué)習(xí)模型被成功應(yīng)用于一般圖片的識(shí)別和理解。深度學(xué)習(xí)的應(yīng)用深度學(xué)習(xí)在圖像識(shí)別上的應(yīng)用空間金字塔(SpatialPyramids)深度學(xué)習(xí)的應(yīng)用深度學(xué)習(xí)在圖像識(shí)別上的應(yīng)用總結(jié)深度學(xué)習(xí)是關(guān)于自動(dòng)學(xué)習(xí)要建模的數(shù)據(jù)的潛在(隱含)分布的多層(復(fù)雜)表達(dá)的算法。換句話來說,深度學(xué)習(xí)算法自動(dòng)的提取分類需要的低層次或者高層次特征。高層次特征,一是指該特征可以分級(jí)(層次)地依賴其他特征,例如:對(duì)于機(jī)器視覺,深度學(xué)習(xí)算法從原始圖像去學(xué)習(xí)得到它的一個(gè)低層次表達(dá),例如邊緣檢測器,小波濾波器等,然后在這些低層次表達(dá)的基礎(chǔ)上再建立表達(dá),例如這些低層次表達(dá)的線性或者非線性組合,然后重復(fù)這個(gè)過程,最后得到一個(gè)高層次的表達(dá)。Deeplearning能夠得到更好地表示數(shù)據(jù)的feature,同時(shí)由于模型的層次、參數(shù)很多,capacity足夠,因此,模型有能力表示大規(guī)模數(shù)據(jù),所以對(duì)于圖像、語音這種特征不明顯(需要手工設(shè)計(jì)且很多沒有直觀物理含義)的問題,能夠在大規(guī)模訓(xùn)練數(shù)據(jù)上取得更好的效果。此外,從模式識(shí)別特征和分類器的角度,deeplearning框架將feature和分類器結(jié)合到一個(gè)框架中,用數(shù)據(jù)去學(xué)習(xí)feature,在使用中減少了手工設(shè)計(jì)feature的巨大工作量(這是目前工業(yè)界工程師付出努力最多的方面),因此,不僅僅效果可以更好,而且,使用起來也有很多方便之處總結(jié)目前的關(guān)注點(diǎn)還是從機(jī)器學(xué)習(xí)的領(lǐng)域借鑒一些可以在深度學(xué)習(xí)使用的方法,特別是降維領(lǐng)域。稀疏編
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度攝影師與攝影棚運(yùn)營方居間合同2篇
- 二零二五版社區(qū)配送訂餐服務(wù)合同范本與社區(qū)管理協(xié)議3篇
- 二零二五年度酒店地毯綠色生產(chǎn)與環(huán)保認(rèn)證合同3篇
- 二零二五年新能源充電樁建設(shè)運(yùn)營合同樣本3篇
- 二零二五版高端住宅項(xiàng)目全程代理銷售合同3篇
- 二零二五版基因合成與生物技術(shù)知識(shí)產(chǎn)權(quán)轉(zhuǎn)讓合同3篇
- 二零二五版10月大型設(shè)備運(yùn)輸委托合同2篇
- 二零二五版廣西事業(yè)單位聘用示范性合同模板12篇
- 2025年度出口貨物環(huán)保認(rèn)證服務(wù)合同3篇
- 二零二五年度膩?zhàn)硬牧蠂H貿(mào)易代理合同2篇
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期期末 地理試題(無答案)
- 勞動(dòng)法培訓(xùn)課件
- 2024年建筑施工安全工作計(jì)劃(3篇)
- 2024屆九省聯(lián)考英語試題(含答案解析、MP3及錄音稿)
- 倉庫消防知識(shí)安全培訓(xùn)
- 從事專業(yè)與所學(xué)專業(yè)不一致專業(yè)技術(shù)人員申報(bào)職稱崗位任職合格證明附件6
- 我國房屋建筑模板技術(shù)的研究綜述
- 人教版小學(xué)三年級(jí)上冊數(shù)學(xué)豎式筆算練習(xí)題
- 航天科工集團(tuán)在線測評(píng)題
- 山東省濰坊新2025屆高三語文第一學(xué)期期末經(jīng)典試題含解析
- 醫(yī)院三基考核試題(康復(fù)理療科)
評(píng)論
0/150
提交評(píng)論