2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年山東省濱州市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(40題)1.

2.

3.

4.

5.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

6.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+3

7.當(dāng)x→0時,x是ln(1+x2)的

A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小8.

9.下列關(guān)系正確的是()。A.

B.

C.

D.

10.

11.()A.A.條件收斂

B.絕對收斂

C.發(fā)散

D.收斂性與k有關(guān)

12.

13.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

14.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

15.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

16.

17.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

18.

19.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

20.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay

21.

A.

B.

C.

D.

22.

23.

24.

25.

26.()。A.e-2

B.e-2/3

C.e2/3

D.e2

27.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

28.

29.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合30.

在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)31.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

32.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當(dāng)小環(huán)M運動到圖示位置時(以MO為坐標(biāo)原點,小環(huán)Md運動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項是()。

A.小環(huán)M的運動方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

33.

34.設(shè)f(x)在點x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

35.微分方程y+y=0的通解為().A.A.

B.

C.

D.

36.A.1B.0C.2D.1/237.直線l與x軸平行,且與曲線y=x-ex相切,則切點的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

38.

39.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

40.

A.

B.

C.

D.

二、填空題(50題)41.曲線y=x3-3x+2的拐點是__________。

42.

43.y=lnx,則dy=__________。

44.

45.

46.

47.

48.y″+5y′=0的特征方程為——.

49.

50.51.

52.

53.設(shè)f(x)在x=1處連續(xù),

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.67.68.69.設(shè)x=f(x,y)在點p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點,則______.70.設(shè)y=2x+sin2,則y'=______.71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.82.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

83.

84.設(shè)y=cosx,則dy=_________。

85.

86.

87.

88.

89.

90.設(shè),則y'=______。三、計算題(20題)91.將f(x)=e-2X展開為x的冪級數(shù).92.

93.

94.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則95.證明:

96.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

97.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.98.求微分方程的通解.99.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.100.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.101.

102.103.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.104.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.105.求曲線在點(1,3)處的切線方程.106.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

107.

108.求微分方程y"-4y'+4y=e-2x的通解.

109.110.

四、解答題(10題)111.(本題滿分10分)求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.112.設(shè)

113.114.

115.求∫sin(x+2)dx。

116.117.118.

119.

120.

五、高等數(shù)學(xué)(0題)121.曲線y=x3一12x+1在區(qū)間(0,2)內(nèi)()。

A.凸且單增B.凹且單減C.凸且單增D.凹且單減六、解答題(0題)122.證明:當(dāng)時,sinx+tanx≥2x.

參考答案

1.A

2.B解析:

3.D

4.B

5.D本題考查的知識點為偏導(dǎo)數(shù)的計算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

6.C本題考查了一階偏導(dǎo)數(shù)的知識點。

7.D解析:

8.B

9.B由不定積分的性質(zhì)可知,故選B.

10.D

11.A

12.B

13.C

14.B

15.C

16.A

17.C

18.A解析:

19.B本題考查的知識點為不定積分換元積分法。

因此選B。

20.C

21.C本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

22.C

23.B

24.A解析:

25.B

26.B

27.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知

可知應(yīng)選A。

28.C

29.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;

當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

30.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。

31.C

32.D

33.C

34.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。

35.D本題考查的知識點為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

36.C

37.C

38.A

39.D

40.B

41.(02)

42.2/3

43.(1/x)dx

44.1/21/2解析:

45.

解析:

46.eyey

解析:

47.48.由特征方程的定義可知,所給方程的特征方程為

49.(e-1)250.e.

本題考查的知識點為極限的運算.

51.3x2

52.53.2本題考查的知識點為:連續(xù)性與極限的關(guān)系;左極限、右極限與極限的關(guān)系.

由于f(x)在x=1處連續(xù),可知必定存在,由于,可知=

54.255.6.

本題考查的知識點為無窮小量階的比較.

56.

解析:

57.

本題考查的知識點為定積分運算.

58.y=1/2y=1/2解析:

59.60.2本題考查的知識點為極限的運算.

61.

解析:

62.解析:

63.x=-3x=-3解析:

64.

65.66.1/2

本題考查的知識點為計算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對y積分,后對x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對x積分,后對y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

67.

68.1本題考查了一階導(dǎo)數(shù)的知識點。69.0本題考查的知識點為二元函數(shù)極值的必要條件.

由于z=f(x,y)在點P0(x0,y0)可微分,P(x0,y0)為z的極值點,由極值的必要條件可知

70.2xln2本題考查的知識點為初等函數(shù)的求導(dǎo)運算.

本題需利用導(dǎo)數(shù)的四則運算法則求解.

Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.

本題中常見的錯誤有

(sin2)'=cos2.

這是由于誤將sin2認(rèn)作sinx,事實上sin2為一個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

(sin2)'=0.

相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

71.

72.

73.

74.f(x)+Cf(x)+C解析:

75.

本題考查的知識點為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

76.

77.-exsiny

78.1/(1-x)2

79.22解析:

80.

81.82.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

83.1/21/2解析:

84.-sinxdx85.本題考查的知識點為定積分的基本公式。

86.2

87.(-21)(-2,1)

88.

89.1/21/2解析:90.本題考查的知識點為導(dǎo)數(shù)的運算。

91.

92.

93.94.由等價無窮小量的定義可知

95.

96.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%97.由二重積分物理意義知

98.

99.

100.

101.由一階線性微分方程通解公式有

102.

103.

列表:

說明

104.函數(shù)的定義域為

注意

105.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

106.

107.

108.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論