2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年安徽省黃山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.

3.

4.

5.

6.若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.為所給方程的解,但不是通解

B.為所給方程的解,但不一定是通解

C.為所給方程的通解

D.不為所給方程的解

7.等于()A.A.

B.

C.

D.

8.若y=ksin2x的一個原函數(shù)是(2/3)cos2x,則k=

A.-4/3B.-2/3C.-2/3D.-4/39.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

10.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

11.

12.當(dāng)x→0時,x2是2x的A.A.低階無窮小B.等價無窮小C.同階但不等價無窮小D.高階無窮小

13.

14.A.0

B.1

C.e

D.e2

15.

16.

17.A.A.0B.1C.2D.3

18.

19.控制工作的實質(zhì)是()

A.糾正偏差B.衡量成效C.信息反饋D.擬定標準

20.

21.設(shè)z=tan(xy),則等于()A.A.

B.

C.

D.

22.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

23.

24.A.-1

B.1

C.

D.2

25.

26.

27.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

28.

29.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

30.

31.

32.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值

33.

34.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

35.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線36.A.A.2

B.

C.1

D.-2

37.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C

38.在空間直角坐標系中,方程2+3y2+3x2=1表示的曲面是().

A.球面

B.柱面

C.錐面

D.橢球面

39.

40.

41.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量42.A.A.2

B.1

C.1/2e

D.

43.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C44.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

45.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)46.二次積分等于()A.A.

B.

C.

D.

47.

48.A.A.必條件收斂B.必絕對收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對收斂49.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)B.f(x)在點x0必定不可導(dǎo)C.必定存在D.可能不存在50.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

二、填空題(20題)51.

52.

53.曲線y=x3-6x的拐點坐標為______.54.微分方程y=0的通解為.55.56.

57.

58.設(shè)函數(shù)z=x2ey,則全微分dz=______.

59.

60.

61.

62.

63.

64.

65.函數(shù)x=ln(1+x2-y2)的全微分dz=_________.

66.

67.

68.

69.70.設(shè)x2為f(x)的一個原函數(shù),則f(x)=_____三、計算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.74.

75.求微分方程y"-4y'+4y=e-2x的通解.

76.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則77.將f(x)=e-2X展開為x的冪級數(shù).78.79.證明:80.求曲線在點(1,3)處的切線方程.

81.

82.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

83.求微分方程的通解.

84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

85.

86.

87.88.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.89.90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.四、解答題(10題)91.

92.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點ξ使得f''(ξ)=0.

93.

94.95.

96.

97.

98.設(shè)z=z(x,y)由方程z3y-xz-1=0確定,求出。

99.

100.

五、高等數(shù)學(xué)(0題)101.f(z,y)=e-x.sin(x+2y),求

六、解答題(0題)102.

參考答案

1.B

2.D

3.A

4.C解析:

5.C

6.B

7.C本題考查的知識點為不定積分基本公式.

由于

可知應(yīng)選C.

8.D解析:

9.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知

可知應(yīng)選A。

10.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標分別代入所設(shè)平面方程,可得方程組

故選A.

11.A

12.D

13.A解析:

14.B為初等函數(shù),且點x=0在的定義區(qū)間內(nèi),因此,故選B.

15.C

16.D

17.B

18.D

19.A解析:控制工作的實質(zhì)是糾正偏差。

20.B

21.B本題考查的知識點為偏導(dǎo)數(shù)運算.

由于z=tan(xy),因此

可知應(yīng)選A.

22.C

23.D

24.A

25.B

26.B

27.B

28.C

29.A

30.C解析:

31.B

32.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

33.A

34.C本題考查的知識點為二次曲面的方程.

35.D

36.C本題考查的知識點為函數(shù)連續(xù)性的概念.

37.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

38.D對照標準二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.

39.C

40.B解析:

41.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

42.B

43.D本題考查的知識點為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

44.B本題考查的知識點為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。

45.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。

由于的p級數(shù),可知為收斂級數(shù)。

可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。

46.A本題考查的知識點為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

47.B

48.D

49.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點x0可導(dǎo),則f(x)在點x0必連續(xù).

函數(shù)f(x)在點x0連續(xù),則必定存在.

函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導(dǎo).

函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

50.B

51.2/52/5解析:

52.-2-2解析:53.(0,0)本題考查的知識點為求曲線的拐點.

依求曲線拐點的一般步驟,只需

(1)先求出y".

(2)令y"=0得出x1,…,xk.

(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.

y=x3-6x,

y'=3x2-6,y"=6x.

令y"=0,得到x=0.當(dāng)x=0時,y=0.

當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.

本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).

注意極值點與拐點的不同之處!54.y=C.

本題考查的知識點為微分方程通解的概念.

微分方程為y=0.

dy=0.y=C.55.1/2

本題考查的知識點為計算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對y積分,后對x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對x積分,后對y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

56.

57.

58.dz=2xeydx+x2eydy

59.3x2+4y

60.-ln2

61.[01)∪(1+∞)

62.

63.

本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).

64.-sinx

65.

66.-1本題考查了洛必達法則的知識點.

67.

解析:

68.69.2.

本題考查的知識點為極限的運算.

能利用洛必達法則求解.

如果計算極限,應(yīng)該先判定其類型,再選擇計算方法.當(dāng)所求極限為分式時:

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無窮大量.

檢查是否滿足洛必達法則的其他條件,是否可以進行等價無窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨進行極限運算等.70.由原函數(shù)的概念可知

71.

72.由二重積分物理意義知

73.函數(shù)的定義域為

注意

74.由一階線性微分方程通解公式有

75.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

76.由等價無窮小量的定義可知

77.

78.

79.

80.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

81.

82.

83.

84.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

85.

86.

87.

88.

89.

90.

列表:

說明

91.92.由題意知f(a)=f(b)=f(c),在(a,c)內(nèi)有一點η1,使得f'(η1)=0,在(c,6)內(nèi)有一點η2,使得f'(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論