2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河南省駐馬店市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.若,則下列命題中正確的有()。A.

B.

C.

D.

2.

3.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

4.A.2x

B.3+2x

C.3

D.x2

5.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。

A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

6.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

7.

8.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

9.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

10.

11.設(shè)f'(x)在點(diǎn)x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-2

12.

13.

14.

15.

16.

17.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

18.

19.A.A.0B.1C.2D.任意值

20.

21.

22.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

23.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。

A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移

B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷

C.當(dāng)時(shí),可近似取

D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)

24.

25.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無(wú)法判定斂散性26.()。A.2πB.πC.π/2D.π/4

27.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().

A.3

B.

C.1

D.1/3

28.

29.圖示為研磨細(xì)砂石所用球磨機(jī)的簡(jiǎn)化示意圖,圓筒繞0軸勻速轉(zhuǎn)動(dòng)時(shí),帶動(dòng)筒內(nèi)的許多鋼球一起運(yùn)動(dòng),當(dāng)鋼球轉(zhuǎn)動(dòng)到一定角度α=50。40時(shí),它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時(shí)圓筒的轉(zhuǎn)速為()。

A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min30.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.

B.

C.

D.

31.()。A.e-6

B.e-2

C.e3

D.e6

32.

33.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

34.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)35.A.A.1B.2C.1/2D.-1

36.

37.

38.為二次積分為()。A.

B.

C.

D.

39.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4

40.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

41.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.4

42.

43.

44.A.1-cosxB.1+cosxC.2-cosxD.2+cosx45.()A.A.

B.

C.

D.

46.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

47.

48.下列關(guān)系式正確的是().A.A.

B.

C.

D.

49.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

50.設(shè)f(x)=sin2x,則f(0)=()

A.-2B.-1C.0D.2二、填空題(20題)51.

52.

53.54.55.

56.方程cosxsinydx+sinxcosydy=O的通解為_(kāi)_____.

57.58.

59.

60.

61.

62.

63.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.64.65.

66.

67.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.

68.若∫x0f(t)dt=2e3x-2,則f(x)=________。

69.設(shè)f(x)=esinx,則=________。70.設(shè)y=3x,則y"=_________。三、計(jì)算題(20題)71.

72.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.74.

75.求微分方程的通解.76.證明:77.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.

82.

83.84.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

86.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

87.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.

92.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問(wèn)繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?

93.

94.

95.

96.將展開(kāi)為x的冪級(jí)數(shù).

97.

98.

99.求微分方程y"-y'-2y=0的通解。100.五、高等數(shù)學(xué)(0題)101.y一y(x)由x2y—ex+ey=0確定,求y(0)。

六、解答題(0題)102.

參考答案

1.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

2.B解析:

3.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

4.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.

5.A

6.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。

7.C

8.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

9.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).

若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:

(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).

(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項(xiàng)可知應(yīng)選C.

本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.

10.A

11.C本題考查的知識(shí)點(diǎn)為極值的必要條件;在一點(diǎn)導(dǎo)數(shù)的定義.

由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而

可知應(yīng)選C.

12.A解析:

13.B

14.D

15.D

16.B

17.C

18.D解析:

19.B

20.B

21.A

22.D

23.D

24.B

25.C

26.B

27.A解析:本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

由于y=x3-ax,y'=3x2-a,令y'=0,可得

由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知

故應(yīng)選A.

28.A

29.C

30.B

31.A

32.C解析:

33.A

34.A

35.C

36.D

37.C

38.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

39.A

40.B

41.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)在一點(diǎn)處的定義.

可知應(yīng)選B.

42.D

43.C

44.D

45.C

46.B

47.B

48.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.

49.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

50.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。

51.y=1y=1解析:

52.yf''(xy)+f'(x+y)+yf''(x+y)

53.

54.3xln3

55.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)

56.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

57.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

若利用極限公式

如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得

58.

59.12x12x解析:60.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:

61.3x2siny3x2siny解析:

62.11解析:63.依全微分存在的充分條件知

64.165.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.

66.2

67.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識(shí)點(diǎn)。

68.6e3x69.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。70.3e3x

71.

72.

73.由二重積分物理意義知

74.由一階線性微分方程通解公式有

75.

76.

77.

78.

79.

列表:

說(shuō)明

80.函數(shù)的定義域?yàn)?/p>

注意

81.

82.

83.

84.由等價(jià)無(wú)窮小量的定義可知

85.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

86.

87.

88.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

89.

90.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

91.本題考查的知識(shí)點(diǎn)為被積函數(shù)為分段函數(shù)的定積分.

當(dāng)被積函數(shù)為分段函數(shù)時(shí),應(yīng)將積分區(qū)間分為幾個(gè)子區(qū)間,使被積函數(shù)在每個(gè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論