版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省汕尾市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
4.
5.A.
B.
C.
D.
6.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
8.A.A.
B.
C.
D.
9.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
10.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
11.
12.
A.2B.1C.1/2D.0
13.
14.A.A.0
B.
C.arctanx
D.
15.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
16.
17.
18.
19.
20.A.A.較高階的無窮小量B.等價(jià)無窮小量C.同階但不等價(jià)無窮小量D.較低階的無窮小量21.A.A.2/3B.3/2C.2D.322.A.A.1B.2C.3D.4
23.
24.
25.
26.級數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
27.當(dāng)x→0時(shí),x2是x-ln(1+x)的().
A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小
28.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
29.A.A.1
B.
C.
D.1n2
30.
31.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
32.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
33.
34.
35.
36.一端固定,一端為彈性支撐的壓桿,如圖所示,其長度系數(shù)的范圍為()。
A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定
37.
38.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合39.A.-cosxB.-ycosxC.cosxD.ycosx40.A.A.-sinx
B.cosx
C.
D.
41.
42.
43.
44.
45.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx46.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
47.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
48.()。A.-2B.-1C.0D.249.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
50.
二、填空題(20題)51.
52.
53.
54.
55.
56.
57.
58.59.60.
61.
62.
63.
64.
65.
66.設(shè)y=x2+e2,則dy=________67.
68.函數(shù)在x=0連續(xù),此時(shí)a=______.
69.
70.三、計(jì)算題(20題)71.
72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.73.求曲線在點(diǎn)(1,3)處的切線方程.74.75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
76.
77.求微分方程y"-4y'+4y=e-2x的通解.
78.79.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.將f(x)=e-2X展開為x的冪級數(shù).82.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則83.84.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
85.證明:
86.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
87.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.88.求微分方程的通解.89.
90.
四、解答題(10題)91.計(jì)算
92.
93.
94.
95.96.求微分方程y"-y'-2y=3ex的通解.
97.
98.求曲線y=x3-3x+5的拐點(diǎn).99.100.計(jì)算∫xcosx2dx.五、高等數(shù)學(xué)(0題)101.求
的收斂半徑和收斂區(qū)間。
六、解答題(0題)102.
參考答案
1.C解析:
2.C
3.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
4.C
5.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
6.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
7.D
8.B本題考查的知識(shí)點(diǎn)為級數(shù)收斂性的定義.
9.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
10.C
11.B解析:
12.D本題考查的知識(shí)點(diǎn)為重要極限公式與無窮小量的性質(zhì).
13.B
14.A
15.A本題考杏的知識(shí)點(diǎn)為級數(shù)的絕對收斂與條件收斂.
16.C
17.C
18.B
19.A
20.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.
21.A
22.A
23.C
24.A
25.C解析:
26.A
27.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.
由于
可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮小.故應(yīng)選C.
28.D由拉格朗日定理
29.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選C.
30.A
31.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
32.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
33.B
34.D
35.B
36.D
37.D
38.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
39.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
40.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
41.B解析:
42.B
43.C解析:
44.A
45.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
46.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯(cuò)誤是選C.如果畫個(gè)草圖,則可以避免這類錯(cuò)誤.
47.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
48.A
49.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
50.D51.2.
本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
52.53.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
54.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:
55.π/4
56.11解析:
57.058.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
59.
60.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
61.22解析:
62.1/21/2解析:
63.發(fā)散
64.
解析:
65.11解析:66.(2x+e2)dx67.1.
本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
68.0
69.(03)(0,3)解析:
70.1/3本題考查了定積分的知識(shí)點(diǎn)。
71.
則
72.函數(shù)的定義域?yàn)?/p>
注意
73.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.
75.由二重積分物理意義知
76.
77.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
78.
79.
80.
列表:
說明
81.82.由等價(jià)無窮小量的定義可知
83.
84.
85.
86.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
87.
88.89.由一階線性微分方程通解公式有
90.
91.本題考查的知識(shí)點(diǎn)為不定積分的換元積分運(yùn)算.
92.
93.
94.
95.96.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得
原方程的通解為
本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.
由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的一個(gè)特解y*.
其中Y可以通過求解特征方程得特征根而求出.而yq*可以利用待定系數(shù)法求解.
97.98.y'=3x2-3,y''=6x令y''=0,解得x=0當(dāng)x<0時(shí),y''<0;當(dāng)x>0時(shí),y''>0。當(dāng)x=0時(shí),y=5因此,點(diǎn)(0,5)為所給曲線的拐點(diǎn)。99.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
積分區(qū)域D如圖2—1所示.
解法1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件安全設(shè)計(jì)評估報(bào)告范本
- 浙江省麗水市青田縣2023-2024學(xué)年五年級上學(xué)期英語期末試卷
- 石材固色劑知識(shí)培訓(xùn)課件
- 塑造五種心態(tài)培訓(xùn)課件4
- 年產(chǎn)6萬噸飼用餅干粉和面包粉項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 二零二五年度地產(chǎn)公司建筑工程合同風(fēng)險(xiǎn)評估與防控策略3篇
- 禮儀知識(shí)培訓(xùn)課件
- 二零二五年度辦公樓主體結(jié)構(gòu)施工與智慧安防系統(tǒng)合同3篇
- 中國大陸自閉癥干預(yù)方法研究綜述
- Unit 9 Can you come to my party Section A 1a~1c 說課稿 -2024-2025學(xué)年人教版八年級英語上冊
- 口腔頜面外科學(xué) 09顳下頜關(guān)節(jié)疾病
- 臺(tái)達(dá)變頻器說明書
- 2023年廣東羅浮山旅游集團(tuán)有限公司招聘筆試題庫及答案解析
- DB11-T1835-2021 給水排水管道工程施工技術(shù)規(guī)程高清最新版
- 解剖篇2-1內(nèi)臟系統(tǒng)消化呼吸生理學(xué)
- 《小學(xué)生錯(cuò)別字原因及對策研究(論文)》
- 北師大版七年級數(shù)學(xué)上冊教案(全冊完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 智慧水庫平臺(tái)建設(shè)方案
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
- 糧食平房倉設(shè)計(jì)規(guī)范
評論
0/150
提交評論