版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省東莞市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
2.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
3.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
4.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
5.下列命題正確的是().A.A.
B.
C.
D.
6.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
7.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績(jī)效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點(diǎn)調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點(diǎn)仍以技術(shù)工作為主,以自身為榜樣帶動(dòng)下級(jí)
C.以抓管理工作為主,同時(shí)參與部分技術(shù)工作,以增強(qiáng)與下級(jí)的溝通和了解
D.在抓好技術(shù)工作的同時(shí),做好管理工作
8.A.(1/3)x3
B.x2
C.2xD.(1/2)x
9.下列等式成立的是
A.A.
B.B.
C.C.
D.D.
10.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay
11.
12.A.A.
B.
C.
D.
13.若,則下列命題中正確的有()。A.
B.
C.
D.
14.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
15.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-416.A.
B.
C.
D.
17.A.A.4πB.3πC.2πD.π
18.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
19.
20.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
21.A.A.2B.1/2C.-2D.-1/222.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
23.
24.
25.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx
26.
27.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
28.
29.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
30.
31.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
32.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
33.
34.
A.2x+1B.2xy+1C.x2+1D.2xy
35.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
36.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
37.
38.
39.
40.
41.
42.
43.
44.
45.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
46.
47.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
48.
49.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
50.
二、填空題(20題)51.
52.過坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.
53.
54.y=lnx,則dy=__________。
55.56.
57.
58.
59.
60.若∫x0f(t)dt=2e3x-2,則f(x)=________。
61.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分62.
63.
64.
65.
66.67.68.
69.設(shè)f(x)=xex,則f'(x)__________。
70.
三、計(jì)算題(20題)71.證明:
72.
73.求微分方程的通解.74.
75.76.77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
78.
79.求曲線在點(diǎn)(1,3)處的切線方程.80.
81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則82.將f(x)=e-2X展開為x的冪級(jí)數(shù).83.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
86.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
87.求微分方程y"-4y'+4y=e-2x的通解.
88.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.89.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
90.四、解答題(10題)91.
92.
93.
94.
95.
96.97.求微分方程xy'-y=x2的通解.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.比較大小:
六、解答題(0題)102.
參考答案
1.B?
2.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于,可知f'(a)=-1,因此選A.
由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.
3.C
4.C
5.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
6.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
7.C
8.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
9.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)
10.C
11.A
12.D
13.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
14.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性.
由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.
15.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
16.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
17.A
18.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
19.D解析:
20.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
21.B
22.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
23.B解析:
24.D
25.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
26.B
27.C
28.A
29.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
30.B
31.D
32.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
33.B解析:
34.B
35.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
36.B
37.C
38.D
39.A
40.C
41.C解析:
42.B
43.D
44.C
45.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
46.A
47.C
48.C解析:
49.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。
50.D解析:
51.
52.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
53.arctanx+C
54.(1/x)dx55.F(sinx)+C
56.
57.11解析:
58.2/32/3解析:
59.-2
60.6e3x61.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
62.k=1/2
63.
64.
65.1/366.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.
67.
68.
69.(1+x)ex
70.-3sin3x-3sin3x解析:
71.
72.
73.
74.
則
75.
76.
77.
列表:
說明
78.79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.由一階線性微分方程通解公式有
81.由等價(jià)無窮小量的定義可知
82.
83.
84.
85.函數(shù)的定義域?yàn)?/p>
注意
86.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 氣象儀器課程設(shè)計(jì)報(bào)告
- 2025吉林省安全員《A證》考試題庫
- 2024年山東省安全員-C證考試題庫
- 球磨機(jī)課程設(shè)計(jì)感想
- 物業(yè)服務(wù)方案課程設(shè)計(jì)
- 施工微課程設(shè)計(jì)
- 濾波器課程設(shè)計(jì)
- 海運(yùn)操作流程課程設(shè)計(jì)
- 有關(guān)蔬菜的烹飪課程設(shè)計(jì)
- 工程制圖cad課程設(shè)計(jì)
- 計(jì)算機(jī)組成原理習(xí)題答案解析(蔣本珊)
- 清潔灌腸護(hù)理
- 2024年北京石景山初三九年級(jí)上學(xué)期期末數(shù)學(xué)試題和答案
- 智慧管網(wǎng)建設(shè)整體解決方案
- 2024-2025學(xué)年高中英語學(xué)業(yè)水平合格性考試模擬測(cè)試題三含解析
- 【長安的荔枝中李善德的人物形象分析7800字(論文)】
- 2024-2030年中國神經(jīng)外科行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 生物安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 抖音直播代播合同范本
- 戈19商務(wù)方案第十九屆玄奘之路戈壁挑戰(zhàn)賽商務(wù)合作方案
- 2024高考政治真題-哲學(xué)-匯集(解析版)
評(píng)論
0/150
提交評(píng)論